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BACKGROUND Epicardial adipose tissue (EAT) volume is a marker of visceral obesity that can be measured in coronary

computed tomography angiograms (CCTA). The clinical value of integrating this measurement in routine CCTA

interpretation has not been documented.

OBJECTIVES This study sought to develop a deep-learning network for automated quantification of EAT volume from

CCTA, test it in patients who are technically challenging, and validate its prognostic value in routine clinical care.

METHODS The deep-learning network was trained and validated to autosegment EAT volume in 3,720 CCTA scans from

the ORFAN (Oxford Risk Factors and Noninvasive Imaging Study) cohort. The model was tested in patients with chal-

lenging anatomy and scan artifacts and applied to a longitudinal cohort of 253 patients post-cardiac surgery and 1,558

patients from the SCOT-HEART (Scottish Computed Tomography of the Heart) Trial, to investigate its prognostic value.

RESULTS External validation of the deep-learning network yielded a concordance correlation coefficient of 0.970 for

machine vs human. EAT volume was associated with coronary artery disease (odds ratio [OR] per SD increase in EAT

volume: 1.13 [95% CI: 1.04-1.30]; P ¼ 0.01), and atrial fibrillation (OR: 1.25 [95% CI: 1.08-1.40]; P ¼ 0.03), after

correction for risk factors (including body mass index). EAT volume predicted all-cause mortality (HR per SD: 1.28

[95% CI: 1.10-1.37]; P ¼ 0.02), myocardial infarction (HR: 1.26 [95% CI:1.09-1.38]; P ¼ 0.001), and stroke (HR: 1.20

[95% CI: 1.09-1.38]; P ¼ 0.02) independently of risk factors in SCOT-HEART (5-year follow-up). It also predicted in-

hospital (HR: 2.67 [95% CI: 1.26-3.73]; P # 0.01) and long-term post–cardiac surgery atrial fibrillation (7-year follow-up;

HR: 2.14 [95% CI: 1.19-2.97]; P # 0.01).

CONCLUSIONS Automated assessment of EAT volume is possible in CCTA, including in patients who are technically

challenging; it forms a powerful marker of metabolically unhealthy visceral obesity, which could be used for cardio-

vascular risk stratification. (J Am Coll Cardiol Img 2023;16:800–816) © 2023 The Authors. Published by Elsevier on

behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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AB BR E V I A T I O N S

AND ACRONYM S

AF = atrial fibrillation

BMI = body mass index

CAC = coronary artery calcium

CAD = coronary artery disease

CCC = Lin concordance

correlation coefficient

CCTA = coronary computed

tomography angiography

CVD = cardiovascular disease

DLN = deep-learning network

EAT = epicardial adipose tissue

LA = left atrial

MI = myocardial infarction
C oronary computed tomography angiography
(CCTA) is used to evaluate coronary artery
disease (CAD) risk,1 with guidelines in

Europe2 and the United States3 recommending CCTA
for assessment of patients with chest pain. The use
of CCTA for detecting CAD is increasing worldwide,
and it is likely that further valuable information
within CCTA scans that is currently not fully utilized
in clinical practice could improve risk assessment
and patient management for cardiometabolic dis-
eases, with multiple such technologies being discov-
ered through the uptake of artificial intelligence
methods in research and practice.4

Adipose tissue is recognized as a key regulator of
cardiovascular health and disease, exerting both
protective and deleterious effects on the cardiovas-
cular system.5 Epicardial adipose tissue (EAT) is a
metabolically active depot of visceral fat5 and may be
a feature of metabolically unhealthy obesity and
metabolic syndrome.6 Indeed, EAT volume has been
associated with multiple distinct cardiovascular dis-
eases including CAD and atrial fibrillation (AF).7 The
EAT volume is generally considered to be a marker of
visceral obesity, as opposed to more sophisticated
metrics such as the pericoronary Fat Attenuation In-
dex, which specifically captures the degree of coro-
nary inflammation, and has prognostic value over and
above that of EAT volume.8 CCTA provides the
noninvasive gold standard measurement of EAT vol-
ume because of its excellent spatial resolution.
However, manual quantification is laborious and
currently falls outside the scope of routine CCTA
interpretation. If clinical utility of automated EAT
volume quantification could be demonstrated and
found to be feasible in patients with technically
challenging CCTA, it is possible that this measure
could become part of standard of care.

In this study we developed and validated a
deep-learning network (DLN) for the automated
quantification of EAT volume, which was then tested
in real-world patients with CCTA with commonly
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encountered image quality issues to ensure
validity. Then, we applied the fully auto-
mated EAT quantification tool to investigate
the clinical association of EAT volume with
relevant cross-sectional and longitudinal
disease outcomes (Central Illustration).

METHODS

STUDY POPULATIONS. Each study (ORFAN
[Oxford Risk Factors and Noninvasive Imag-
ing Study], AdipoRedOx [Adipose tissue and
cardiovascular RedOx regulation] study, and
the SCOT-HEART [Scottish Computed To-
mography of the Heart] trial) received ethical
approval. The full ethics, population de-
scriptions, variable definitions, laboratory

techniques, and CCTA acquisition and retrieval pro-
tocols are outlined in the Supplemental Methods.
Briefly, the ORFAN study (NCT05169333) is an inter-
national multicenter prospective cohort study that
collects CCTA scans and patient clinical data from
those who are undergoing or have undergone CCTA
since 2005.9 For this analysis, data were utilized from
across 4 National Health Service sites in England and
1 in the United States (Figure 1). The AdipoRedOx
study involves patients who are undergoing cardiac
surgery; as part of the study, patients undergo CCTA
shortly after their operation and are prospectively
followed up for clinical outcomes via National Health
Service’s NHS Digital (see the Supplemental
Methods). The SCOT-HEART trial included clinical
patients with suspected angina caused by coronary
heart disease, who were followed up for 5 years post-
CCTA for clinical outcomes (see the Supplemental
Methods).

OVERALL STUDY DESIGN. The overall approach to
the development of the DLN, the internal and
external validation, and the application of the DLN in
external cohorts for ascertainment of clinical utility is
outlined in Figure 2. In summary, 2,200 CCTA scans
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CENTRAL ILLUSTRATION Development, Testing, and External Application of an Artificial
Intelligence–Powered Epicardial Adipose Tissue Quantification Tool for Clinical Practice

2,200 UK scans manually
segmented & 600 UK scans

manually corrected for AI model
feedback learning

Residual-U-Net CNN for 3D
volumetric segmentation of
epicardial adipose tissue on

clinical CCTA

Clinical CCTA
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Deep-learning model for
automated EAT quantification

EAT improves detection of
CAD & AF risk at time of scan,
regardless of BMI and other

risk factors

EAT volume improves
prognostic assessment for MI,
stroke, postoperative AF, and

mortality
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FIGURE 1 The ORFAN Arm 4 Study

ORFAN Arm 4 Study - Current Cohort Size 75,000; Collecting Data for 250,000

Sites contribute all clinical
CCTA scans from 2010 via

secure portal

Sites contribute demographic,
clinical and pathology data &

scan reports for all participants

NHS Digital (all hospital records
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The ORFAN (Oxford Risk Factors and Noninvasive Imaging Study) Arm 4 study is an international multicenter retrospective cohort study of patients undergoing clinically

indicated CCTA. The initial cohort size is 75,000 patients within the United Kingdom and 25,000 internationally, with ethically approved expansion underway for

250,000 patients. Within the United Kingdom, the study includes 17 National Health Service (NHS) Trusts, 4 of which contributed data to the current study. Data

collected for each participant includes the CCTA scan, data from the local hospital electronic patient record (EPR), and data from authorized third parties, including

NHS Digital, all hospital event data from 2005 to now; NICOR (National Institute for Cardiovascular Outcomes Research), a national cardiac event registry; and SSNAP

(Sentinel Stroke National Audit Programme), a national stroke event registry. CCTA ¼ coronary computed tomography angiography.

CENTRAL ILLUSTRATION Continued

(Top) A deep-learning model was trained to automatically extract the adipose tissue from CCTA. (Middle) The model performed excellently compared to human

segmentation in internal and external testing, including in patient groups that are commonly occurring yet challenging for CCTA. (Bottom) The final automated

artificial intelligence (AI) model for epicardial adipose tissue (EAT) quantification was applied to external clinical cohorts and revealed improved detection of prevalent

disease risk for coronary artery disease (CAD) and atrial fibrillation (AF) and provided incremental prognostic benefit for key cardiovascular events such as myocardial

infarction (MI), stroke, postoperative AF, and mortality in longitudinal cohorts. 3D ¼ 3-dimensional; BMI ¼ body mass index; CAC ¼ coronary artery calcium;

CCC ¼ Lin concordance correlation coefficient; CNN ¼ convolutional neural network; CCTA ¼ coronary computed tomography angiography; CVD ¼ cardiovascular

disease; GPU ¼ graphics processing unit.
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FIGURE 2 Study Flowchart of Model Development, Testing, and External Application
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for atherosclerotic disease

(SCOT-HEART)

External Testing

720 unseen ORFAN USA CCTA
External Validation
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initial performance testing
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Internal Validation

EAT volume prognostic power
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Schematic representation of the scientific approach to the development of the deep-learning model, the validation of the model through internal and

external cohorts, and the application of the automated epicardial adipose tissue (EAT) volume quantification tool to 3 groups of patients from the

AdipoRedOx (Adipose tissue and cardiovascular RedOx regulation) study and SCOT-HEART (Scottish Computed Tomography of the Heart) trial. AF ¼ atrial

fibrillation; DLN ¼ deep-learning network; other abbreviations as in Figure 1.
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from the ORFAN study were used for training the DLN
for the detection of the whole heart within the
bounds of the pericardium. Following training,
an initial assessment of model performance was
performed in 100 unseen ORFAN study scans
(Supplemental Figures 1 and 2). Three separate
groups of 200 unseen scans from the ORFAN study
were used for fine-tuning the model through 3 itera-
tions of feedback learning.

The DLN was tested internally on 200 unseen
ORFAN study scans from the UK sites of the study.
External validation was performed on 720 unseen
scans from the U.S. sites of the ORFAN study. The
DLN was then applied to unseen scans from chal-
lenging clinical populations to test the model in pa-
tients with challenging anatomy and/or commonly
occurring scan artifacts. Finally, the model was tested
in unseen external scans of the SCOT-HEART trial for
real-world evaluation of the prognostic value of EAT
volume as a marker of metabolically unhealthy
obesity. The model was also applied within the Adi-
poRedOx study to test the prognostic value of EAT
volume on the risk of in-patient post–cardiac surgery
AF (>30 seconds of AF on monitoring) and long-term
AF (paroxysmal, persistent, or chronic) following
surgery were investigated.

DEVELOPING THE DLN FOR AUTOMATED SEGMENTATION

AND QUANTIFICATION OF EAT VOLUME. Manual seg-
mentation of the 2,200 CCTA and the iterations of
scans for feedback learning of the DLN, and the
automated extraction of EAT volume from the
heart segmentation were performed using CaRi-
Heart (version 2.2.1, Caristo Diagnostics Ltd)
(Supplemental Figure 3).10 A fully automated method
for whole heart segmentation on CCTA scans was
employed using a 3-dimensional Residual-U-Net
neural network architecture for volumetric segmen-
tation of CCTA (Supplemental Methods). The archi-
tecture of the DLN is demonstrated in Figure 3A.

https://doi.org/10.1016/j.jcmg.2022.11.018
https://doi.org/10.1016/j.jcmg.2022.11.018
https://doi.org/10.1016/j.jcmg.2022.11.018
https://doi.org/10.1016/j.jcmg.2022.11.018


FIGURE 3 Schematic of the Deep-Learning Model for Automated Segmentation of the Whole Heart Within the Pericardium and Example

Automated Segmentation
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(A) Block diagram of the Residual U-Net–based convolutional neural network architecture. Details of each layer are provided in the

Supplemental Methods. (B) A single CCTA from the ORFAN study demonstrating human expert segmentation as ground truth, automated

machine segmentation and a merge. A ¼ anterior; Concat ¼ concatenation; Cov ¼ convolution; I ¼ inferior; L ¼ left; P ¼ posterior; R ¼ right;

RelU ¼ rectified linear activation function; S ¼ superior; other abbreviations as in Figures 1 and 2.
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TABLE 1 Demographics and Scan Characteristics of ORFAN Study Cohorts Used in AI Model Development and Testing

ORFAN Manual
Training Cohort
(n ¼ 2,200)

ORFAN UK Feedback
Training Cohort

(n ¼ 600)

ORFAN UK
Internal Validation Cohort

(n ¼ 200)

ORFAN USA
External Validation Cohort

(n ¼ 720)

Age, y 60 (50-70) 57 (49-64) 56 (48-62) 53 (43-62)

Male 1,047 (47.6) 315 (52.5) 104 (52.0) 389 (54.0)

BMI, kg/m2 26.6 (23.6-29.9) 26.1 (23.1-30.0) 27.7 (24.8-30.7) 27.9 (24.5-32.2)

Active smoking 376 (17.0) 93 (15.5) 27 (13.5) NA

Hypertension 711 (32.0) 228 (38.0) 73 (36.5) 309 (42.9)

Hypercholesterolemia 896 (40.7) 253 (42.2) 76 (38.0) 370 (51.4)

Diabetes mellitus 286 (13.0) 101 (16.8) 25 (12.5) 73 (10.1)

Valve disease 139 (6.3) 31 (5.2) 13 (6.5) 49 (6.8)

Known CAD 188 (8.5) 55 (9.2) 21 (10.5) 331 (46.0)

Atrial fibrillation 98 (4.5) 21 (3.5) 9 (4.5) 98 (13.6)

Previous heart surgery 47 (2.1) 19 (3.2) 7 (3.5) 16 (2.2)

Scans

Sites (scanner make and model) Oxford, UK (GE Revolution GSI, GE Lightspeed
VCT, and Canon Aquilion One)

Bath, UK (Siemens Drive)
Milton Keynes, UK (Canon Aquilion Prime SP)

Leicester, UK (Siemens Definition Flash)

Oxford, UK (GE Revolution
GSI, GE Lightspeed VCT, and

Canon Aquilion One)

Cleveland, Ohio, USA
(Philips Brilliance iCT and
Siemens Definition Flash)

Tube voltage, kVp

120 2,112 (96.0) 567 (94.5) 193 (96.5) 463 (64.3)

100 81 (3.7) 33 (5.5) 7 (3.5) 257 (35.7)

80 7 (0.3) 0 (0) 0 (0) 0 (0)

EAT volume, cm3 133.2 (100.1-191.8) 124.9 (97.4-203.2) 120.9 (95.1-156.2) 169.3 (111.6-241.7)

Values are n (%) or median (IQR).

AI ¼ artificial intelligence; BMI ¼ body mass index; CAD ¼ coronary artery disease; EAT ¼ epicardial adipose tissue; GE ¼ General Electric; NA ¼ not applicable; ORFAN ¼ Oxford Risk Factors and
Noninvasive Imaging Study.
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INTERNAL VALIDATION. A random sample of 200
sequestered CCTA from the UK sites in the ORFAN
study were used for internal validation of the DLN.
Human segmentation of these scans was undertaken
blind to all other data.

EXTERNAL VALIDATION. A sample of 720 unseen
CCTA from the Cleveland Clinic site of the ORFAN
study were used for external validation of the algo-
rithm—as a broad external validation cohort.11 The
manual segmentation of these scans was undertaken
blind to all other data.
STATISTICAL ANALYSIS. For inter-reader repeat-
ability testing and human vs automated model
assessment of testing data (preliminary testing, in-
ternal/external validation, and challenging clinical
populations) agreement was assessed by using the Lin
concordance correlation coefficients (CCC) with scat-
terplots and Bland-Altman analysis for significance of
bias. When applied in a cohort-wide setting in the
AdipoRedOx and SCOT-HEART studies, all EAT vol-
umes were standardized by patient body surface area
using the Du Bois formula.

For cross-sectional analysis of disease risk
conveyed by EAT volume, multiple-adjusted logistic
regression was used for calculation of the odds ratio
of prevalent disease (AF at time of CCTA and
obstructive CAD from CCTA) at the time of the CCTA
given increase in EAT by 1 SD. All analyses were
adjusted for a standard set of cardiovascular disease
(CVD) risk factors that are listed within all figure
legends. Longitudinal assessment of the prognostic
value of EAT volume was performed by multivariable
Cox regression models adjusted for the standard set
of clinical risk factors for each outcome. Both odds
ratios and HRs are reported per SD increase in EAT
volume. Analysis of all SCOT-HEART trial risk models
was repeated with the inclusion of only variables in
each model that were found to have a statistically
meaningful association with the relevant outcome
(dependent variable) in univariate analysis, at
the level of P # 0.1 (Supplemental Methods,
Supplemental Table 1). Supplemental analysis of
AdipoRedOx study risk models was performed with
AF-specific risk factors (Supplemental Methods,
Supplemental Figure 4).

Receiver-operating characteristic curves for the
discrimination of obstructive CAD from CCTA and
myocardial infarction (MI) were plotted with a CVD
risk factor models vs traditional risk factor model plus
the addition of EAT volume. Area under the curve
analysis was undertaken to compare the models for
each outcome.

https://doi.org/10.1016/j.jcmg.2022.11.018
https://doi.org/10.1016/j.jcmg.2022.11.018
https://doi.org/10.1016/j.jcmg.2022.11.018
https://doi.org/10.1016/j.jcmg.2022.11.018


TABLE 2 Demographics and Scan Characteristics of External Clinical Cohorts

AdipoRedOx Cohort
(n ¼ 253)

SCOT-HEART Cohort
(n ¼ 1,558)

Age, y 67 (59-74) 58 (47-69)

Male 220 (87.0) 887 (56.9)

BMI, kg/m2 27.9 (25.0-31.1) 28.7 (25.1-33.2)

Active smoking 127 (50.2) 298 (19.1)

Hypertension 186 (73.5) 541 (34.7)

Hypercholesterolemia 227 (89.7) 810 (52.0)

Diabetes mellitus 55 (21.7) 173 (11.1)

Valve disease 48 (19.0) 144 (9.2)

Known CAD 253 (100) 158 (10.1)

Atrial fibrillation 18 (7.1) 32 (2.1)

Previous heart surgery 253 (100) 33 (2.1)

Scans

Site Oxford
GE Revolution GSI
GE Lightspeed VCT
Canon Aquilion One

Scotland
Philips Brilliance 64
Siemens Biograph mCT
Canon Aquilion One

Scanner make and model

Tube voltage, kVp

120 253 (100) 846 (54.3)

100 0 (0) 712 (45.7)

80 0 (0) 0 (0)

EAT volume, cm3 162.9 (103.3-223.3) 130.1 (94.2-171.6)

Values are n (%) or median (IQR).

AdipoRedOx ¼ Adipose tissue and cardiovascular RedOx regulation; SCOT-HEART ¼ Scottish Computed To-
mography of the Heart; other abbreviations as in Table 1.
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We selected the optimum unified cutoff for EAT
volume prognostication for all-cause mortality, fatal/
nonfatal MI, and fatal/nonfatal stroke in SCOT-
HEART by identifying the value that maximized the
Youden J statistic (sum of sensitivity and specificity)
on time-dependent receiver-operating characteristic
curve analysis for all-cause mortality, fatal/nonfatal
MI, and fatal/nonfatal stroke to ensure an optimum
balance between sensitivity and specificity in our
models. For consistency, the same approach was used
to select the optimum cutoff for EAT volume prog-
nostication for in-hospital postoperative and long-
term AF risk within the severe CAD population of
the AdipoRedOx study. Further discussion about the
statistical analysis is in the Supplemental Methods.

RESULTS

The geographic location, demographics, clinical risk
factors, and CCTA scan technical parameters for all
ORFAN study cohorts used in DLN training, valida-
tion, and external testing are shown in Table 1. The
demographics and scan characteristics of the external
clinical cohorts for which the DLN were applied
following development are shown in Table 2. The
relevant clinical outcomes for the prospective clinical
cohorts are presented in Supplemental Table 2. In all
cohorts where EAT volumes were quantified, both
manually and automatically, the values were nor-
mally distributed.

INTER-READER REPEATABILITY FOR EAT SEGMENTATION

AND WHOLE HEART SEGMENTATION. The interobserver
variability between 2 expert analysts of the Oxford
Academic Cardiovascular Computed Tomography
Core Lab core lab was evaluated in 100 randomly
selected patients from the UK sites of the ORFAN
study. CCC for EAT volume was excellent between
readers at 0.970, and the bias was nonsignificant
at mean of 2.1 (95% agreement: �3.9 to 6.1) cm3

(P ¼ 0.74) (Supplemental Figures 5A and 5B). For the
whole heart segmentation volume, CCC was also
excellent at 0.969 with nonsignificant bias mean of
15.2 (95% agreement: �7.5 to 23.1) cm3 (P ¼ 0.08)
(Supplemental Figures 5C and 5D).

INTERNAL VALIDATION OF THE MODEL. Final in-
ternal validation occurred following 3 iterations of
feedback learning to enhance the performance of the
model. The median EAT volume in internal validation
was 120.9 (IQR: 95.1-156) cm3. When applied to 200
unseen scans from the UK sites of the ORFAN study,
the CCC was 0.972 (Figure 4A). The bias in Bland-
Altman analysis (Figure 4B) was also nonsignificant
at 6.1 (IQR: �11.1 to 15.7) cm3 (P ¼ 0.19).
EXTERNAL VALIDATION OF THE MODEL. The final
deep-learning model was applied to 720 unseen scans
from the U.S. sites of the ORFAN study. The mean
automated analysis time for the automated segmen-
tation was 12.4 seconds compared with mean manual
segmentation time of 18 minutes and 20 seconds. The
median EAT volume in external validation was 169.3
(IQR: 111.6-241.7) cm3. The CCC for the automated
deep-learning model vs human expert segmentation
in the external validation cohort was excellent, at
0.970 (Figure 4C) and the bias in Bland-Altman anal-
ysis (Figure 4D) was nonsignificant at 3.2 (IQR: �13.6
to 17.2) cm3 (P ¼ 0.20).

VALIDATION OF THE AUTOMATED MODEL FOR EAT

VOLUME QUANTIFICATION IN CHALLENGING CLINICAL

POPULATIONS. Excellent CCC for automated EAT
segmentation vs human expert segmentation was
achieved in all challenging patient groups: Patient’s
with recent cardiac surgery (<6 weeks post operation)
CCC ¼ 0.960 (Figure 5A, green); patients with body
mass index (BMI) $40, CCC ¼ 0.962 (Figure 5A, red);
patients with reported coronary artery calcium (CAC)
score of $400 (Figure 5B, green), CCC ¼ 0.958; pa-
tients with significant metallic artifact within the
pericardium, CCC ¼ 0.955 (Figure 5B, red), and a
combined patient group of recent open-heart surgery,
BMI $30 kg/m2 and CAC $400, CCC ¼ 0.955
(Figure 5C).

https://doi.org/10.1016/j.jcmg.2022.11.018
https://doi.org/10.1016/j.jcmg.2022.11.018
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FIGURE 4 Validation of the Deep-Learning Model

40 80 120

Internal Validation
CCC = 0.97

ORFAN UK (n = 200)

160 200
Human Segmented EAT Volume (cm3)

Au
to

m
at

ed
 E

AT
 V

ol
um

e 
(c

m
3 )

240
20

40

80

120

160

200

240

A

4020 80 120

Internal Validation

ORFAN UK (n = 200)

160 200
Mean Automatic & Human EAT Volume (cm3)

Au
to

m
at

ic
 −

 H
um

an
 E

AT
 V

ol
um

e 
(c

m
3 )

240

−60

−11.1

+15.7

+6.1 (P = 0.19)

−45

−30

−15

0

+15

+30

+45

+60

B

70 140 210

External Validation
CCC = 0.970

ORFAN USA (n = 720)

280 350
Human Segmented EAT Volume (cm3)

Au
to

m
at

ed
 E

AT
 V

ol
um

e 
(c

m
3 )

420

70

140

210

280

350

420

C

70 140 210

External Validation

ORFAN USA (n = 720)

280 350
Mean Automatic & Human EAT Volume (cm3)

Au
to

m
at

ic
 −

 H
um

an
 E

AT
 V

ol
um

e 
(c

m
3 )

420

−60

−13.6

+17.2

+3.2 (P = 0.20)

−45

−30

−15

0

+15

+30

+45

+60

D

Following all training and fine-tuning of the algorithm, internal validation in 200 ORFAN UK cases occurred and is demonstrated in the scatterplot (A) and Bland-

Altman plot (B). External validation in 720 ORFAN USA scans is shown in the scatterplot (C) and Bland-Altman plot (D). CCC ¼ Lin concordance correlation coefficient;

other abbreviations as in Figures 1 and 2.
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CROSS-SECTIONAL CLINICAL CORRELATIONS.

At the time of the CCTA, application of the fully
automated segmentation tool for quantification of
EAT volume was found to be a significant indepen-
dent predictor of the presence of AF at time of CCTA
and obstructive CAD from CCTA (any 1 coronary
vessel with $50% stenosis on CCTA), within 1,558
patients randomized to receive CCTA in the SCOT-
HEART trial population.

When accounting for CVD risk factors the odds
ratio of AF at time of CCTA per SD increase of EAT
was 1.25 (95% CI: 1.08-1.40; P ¼ 0.03) (Figure 6A).
When accounting for CVD risk factors the odds ratio
of obstructive CAD from the CCTA per SD increase
of EAT was 1.13 (95% CI: 1.04-1.30; P ¼ 0.01)
(Figure 6B). Results with statistically selected risk
factor adjustment is shown in Supplemental
Figure 4.

LONGITUDINAL EAT VOLUME CLINICAL CORRELATIONS.

Median follow-up for the 1,558 patients randomized
to receive CCTA in the SCOT-HEART trial, which were
analyzed was 4.8 years. There were 35 deaths of all
causes (2.25%) of which 4 were related to coronary
heart disease (0.25%). There were 8 fatal and nonfatal
strokes (0.51%) and 39 fatal and nonfatal myocardial
infarctions (2.5%).

The HR of all-cause mortality per SD increase of
EAT was 1.28 (95% CI: 1.10-1.37); P ¼ 0.02, after ac-
counting for CVD risk factors (Figure 6C). When

https://doi.org/10.1016/j.jcmg.2022.11.018
https://doi.org/10.1016/j.jcmg.2022.11.018


FIGURE 5 Validation of the Automated Deep-Learning Model in Challenging Clinical Populations
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The automated EAT volume quantification tool was applied to groupings of unseen CCTA from the AdipoRedOx study and the SCOT-HEART

trial. (A) Patients who underwent open heart surgery, specifically coronary artery bypass graft (CABG), up to 6 weeks prior to CCTA (green)

and patients with body mass index (BMI) $40 kg/m2 (red); (B) patients with coronary artery calcium (CAC) $400 (green) and patients with

significant metallic artifact within the pericardium (red); (C) patients who underwent open heart surgery (CABG) up to 6 weeks prior to the

CCTA, had BMI $30 kg/m2 and CAC $400. Abbreviations as in Figures 1, 2, and 4.
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adjusted for the same risk factors, the HR of noncar-
diac mortality per SD increase of EAT volume was 1.17
(95% CI: 1.07-1.33; P ¼ 0.04) (Figure 6D). This consti-
tutes a DHR of �0.10, confirming that EAT is a mea-
sure of visceral adipose tissue related to multiple fatal
pathologies, unrelated to CAD. When accounting for
CVD risk factors, the HR of MI per SD increase of EAT
was 1.26 (95% CI: 1.09-1.38; P ¼ 0.001) (Figure 6E).
Finally, when accounting for the same risk factors, HR
of stroke per SD increase of EAT is 1.20 (95% CI: 1.08-
1.32; P ¼ 0.02) (Figure 6F). Results with statistically
selected risk factor adjustment are shown in
Supplemental Figure 4.

Adding EAT volume into a clinical model led to
significant improvement in the ability to detect
obstructive CAD on CCTA (any 1 coronary vessel

https://doi.org/10.1016/j.jcmg.2022.11.018


FIGURE 6 Cross-Sectional and Longitudinal Associations Between EAT Volume and Clinical Outcomes in the SCOT-HEART Trial
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with $50% stenosis on CCTA) cross-sectionally
(DAUC: 0.103; P < 0.01) (Figure 6G) and improved
the ability to predict future MI (both fatal and
nonfatal) longitudinally (DAUC: 0.07; P < 0.01)
(Figure 6H).

A SINGLE PREDICTIVE VALUE OF EAT VOLUME FOR

LONG-TERM DISEASE RISK. To generate distinct
clinical groups based around a single EAT volume
cutpoint, the SCOT-HEART trial population was
dichotomized into high vs low EAT volume groups
based on an optimum cutoff of 169.9 cm3 for the 3
primary outcomes of interest: all-cause mortality;
fatal/nonfatal MI; and fatal/nonfatal stroke. This
cutoff was derived from a weighted Youden J index
analysis to generate a single value for application.
Utilizing this cutpoint, there was significantly
different adjusted HRs for the low EAT group
(<169.9 cm3) vs the high EAT group ($169.9 cm3) for
all outcomes. All analyses included multivariable
adjustment for CVD risk factors including BMI.

High EAT volume values ($169.9 cm3 vs
<169.9 cm3) were associated with a higher prospec-
tive risk for both fatal and nonfatal MI (adjusted HR:
1.93; 95% CI: 1.31-4.01; P < 0$01) (Figure 7A), both fatal
and nonfatal stroke (adjusted HR: 2.25; 95% CI: 1.07-
4.72; P < 0$01) (Figure 7B), noncardiac mortality
(adjusted HR: 3.84; 95% CI: 1.54-12.10; P < 0$01)
(Figure 7C), and all-cause mortality (adjusted HR:
5.02; 95% CI: 2.93-9.34; P < 0$01) (Figure 7D).

EAT VOLUME AND POSTOPERATIVE AF RISK.

Utilizing 250 scans from patients in the AdipoRedOx
study, the longitudinal associations between EAT
volume and in-patient postoperative AF (>30 seconds
of AF on monitoring) and long-term AF (paroxysmal,
persistent, or chronic) following surgery were
investigated.

Again, a weighted Youden J index analysis was
used to generate a single value to dichotomize the
FIGURE 6 Continued

Plots of cross-sectional adjusted risk models for atrial fibrillation at the t

diabetes, and obstructive coronary artery disease (CAD) as detected on

stenosis on CCTA), adjusted for the same risk factors plus non-HDL chole

increase in EAT volume for 1,558 patients randomized to receive CCTA in

EAT volume in 1,558 patients randomized to receive CCTA in the SCOT-

mortality (D), both with the same adjustment as for A. MI (both fatal and

the same adjustment. Receiver-operating characteristic (ROC) curves are

CCTA (G) and longitudinal MI (H). The risk factor model (green) for eac

cholesterol, diabetes, and CAC score, with obstructive CAD also included

addition of EAT volume. *Continuous variables per SD increase; †P < 0.

HDL ¼ high-density lipoprotein; MI ¼ myocardial infarction; other abbre
AdipoRedOx study population into high vs low EAT
volume groups based on an optimum cutoff of
198.7 cm3 for the 2 primary outcomes of in-hospital
postoperative AF and long-term postoperative AF.
Utilizing this cutpoint, there was significantly
different adjusted HRs for the low EAT group
(<198.7 cm3) vs the high EAT group ($198.7 cm3) for
both outcomes.

There were 97 events of in-hospital postoperative
AF (38.8%) and 48 cases of new-onset AF (19%) in
nationwide NHS Digital data for the AdipoRedOx
cohort. The Kaplan-Meier curve for in-hospital post-
operative AF following cardiac surgery for high
($198.7 cm3) vs low (<198.7 cm3) EAT volume. High
EAT volumes were associated with a significantly
greater risk for in-patient postoperative AF following
adjustment for CVD risk factors, with HR of 2.67
(95% CI: 1.26-3.73; P < 0.01), per SD increase in EAT
volume (Figure 8A). Equally, for long-term new-onset
AF following cardiac surgery, high-risk EAT volumes
were associated with a significantly greater risk for
long-term AF, with HR of 2.14 (95% CI: 1.19-2.97;
P < 0.01), per SD increase in EAT volume (Figure 8B).

The addition of EAT volume into a CVD risk factor
model significantly improved the prediction of new-
onset in-hospital AF in receiver-operating character-
istic curve analysis (Figure 8C) with DAUC of þ0.0.8
(P ¼ 0.03) for CVD risk factor model 1 with the addi-
tion of EAT volume, and DAUC of þ0.11 (P < 0.001)
with the addition of the risk factor model plus EAT
volume on top of CCTA-derived left atrial (LA) vol-
ume alone. The same was found for new-onset long-
term AF (Figure 8D), with DAUC of þ0.09 (P ¼ 0.04)
for risk factor model 1 with the addition of EAT vol-
ume, and DAUC of þ0.11 (P < 0.001) over LA volume
alone.

Identical analysis with adjustment for a selection
of AF-specific risk factors, including LA volume
and N-terminal pro–B-type natriuretic peptide, is
ime of the scan, adjusted for age, sex, BMI, hypertension, CAC score,

CT (A); and obstructive CAD (any 1 coronary vessel with $50%

sterol and without obstructive CAD (B). Odds ratio is shown per 1-SD

the SCOT-HEART trial. Plots of longitudinal HRs per SD increase in

HEART trial are shown for all-cause mortality (C) and noncardiac

nonfatal) (E) and stroke (both fatal and nonfatal) (F) are shown with

shown for the discrimination of obstructive CAD at the time of the

h curve includes age, male sex, BMI, hypertension, non-HDL

in the MI model. Red in both curve is the risk factor model with the

05. AUC ¼ area under the curve; CT ¼ computed tomography;

viations as in Figures 1, 2, and 5.



FIGURE 7 High EAT Volume Increases Risk of Major Adverse Events When Assessed With a Single Cutpoint
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Utilizing a single cutpoint for patients considered at high risk in SCOT-HEART (high risk ¼ EAT $169.9 cm3), Kaplan-Meier curves for

(A) fatal/nonfatal MI, (B) fatal/nonfatal stroke, (C) noncardiac mortality, and (D) all-cause mortality are demonstrated. All HRs are adjusted

for age, sex, BMI, hypertension, diabetes mellitus, CAC score (log-transformed) and obstructive CAD as derived from CCTA. Abbreviations as in

Figures 1, 2, 5, and 6.
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FIGURE 8 Prognostic Value of EAT Volume for Postoperative AF
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increase of EAT volume. Adjustment is made for age, sex, hypertension, diabetes, CAC score, and BMI. (C,D) Time-dependent ROC curves for

discrimination of in-hospital postoperative AF (C) and long-term postoperative AF (D). CCTA–derived left atrial (LA) volume (blue) is shown

alone; model 1 (red) consists of age, sex, hypertension, diabetes, CAC score, and BMI. The addition of EAT volume into model 1 is

demonstrated (green). Abbreviations as in Figures 1, 2, 5, and 6.
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presented as Supplemental Figure 6, with EAT vol-
ume retaining significance in all models. There was
no significant change in results for all postoperative
AF risk analysis when BMI was replaced with waist-
hip ratio (Supplemental Figure 7).

DISCUSSION

In this study we developed a deep-learning model for
automated segmentation and quantification of EAT
from CCTA images. The model was then validated in
multiple cohorts, including commonly occurring
challenging populations where manual segmentation
is extremely difficult because of artifacts with good
performance. Then we applied this automated model
to the SCOT-HEART cohort, demonstrating a good
prognostic value of EAT volume for all-cause
mortality and cardiovascular events, as a possible
measure of unhealthy visceral obesity relevant to
cardiometabolic dysfunction, regardless of whether
EAT volume was used as a continuous variable or
when used with a cutoff. Contrary to pericoronary Fat
Attenuation Index, which captures the degree of
coronary artery inflammation and is predictive of
cardiac (but not of noncardiac) mortality, we now
demonstrate that EAT volume is predictive of
noncardiac mortality, confirming its role as a broader
biomarker of visceral obesity that affects survival in a
broader sense. We also demonstrate that this mea-
surement has important prognostic value for post-
operative AF in patients undergoing cardiac surgery,
beyond known postoperative risk models including
LA volume and N-terminal pro–B-type natriuretic
peptide. Fully automated measurement of EAT vol-
ume incorporated into routine interpretation of CCTA
promises to significantly improve the risk stratifica-
tion of patients across several important clinical
outcomes.

We developed a deep-learning model utilizing a
single network for the fully automated and rapid
quantification of EAT volume from CCTA. Previous
automated models for EAT quantification have pre-
dominantly been in small cohorts.12,13 The most
relevant model is by Commandeur et al14 who
developed a convolutional neural network capable of
automated EAT segmentation and tested in the
EISNER (Early Identification of Subclinical Athero-
sclerosis by Noninvasive Imaging Research) cohort;
however, no head-to-head comparison is made in this
study. The model developed here achieves accurate
EAT volume quantification in technically challenging
yet commonly occurring clinical populations. The
need for any artificial intelligence–based radiology
approaches to be applicable for all-comers is
fundamental to patient acceptance and the future
uptake of such technology. The DLN reduced EAT
quantification time from an average of 18 minutes
when performed manually, to an average of 12 sec-
onds, rendering this tool usable in the clinical envi-
ronment without adding workload to clinical teams.

EAT volume has previously been found to be
associated with CVD metrics and outcomes including
the presence of atherosclerosis,15 as well as coronary
calcification progression.16 EAT is a source of
numerous proinflammatory mediators that circulate
well beyond the microcirculation of the heart to exert
paracrine and endocrine effects on the cardiovascular
and endocrine systems.5 We found EAT volume to be
a significant predictor of all-cause mortality even
with the exclusion of cardiac deaths. This suggests
that the EAT may play a clinically significant role in
broader metabolic diseases beyond atherosclerotic
CAD. We propose that EAT volume should be treated
as the gold standard for the detection of metabolically
unhealthy visceral obesity and could form part of
routine clinical interpretation of CCTA. This would
shift the focus of CCTA examination as a purely
structural assessment of the coronary arteries toward
a more universal assessment of cardiovascular risk
that considers a key visceral, metabolically sensitive,
tissue depot.

EAT is in continuous bidirectional communication
with the cardiovascular system.5 When there is
discordance between adipose tissue and the cardio-
vascular system the former is thought to shift func-
tion and exerts detrimental effects on the vessels and
the heart muscle,17 which may predispose the patient
to adverse outcomes such as those that we investi-
gated. We found that EAT volume is predictive of
nonfatal MI and stroke independent of BMI and
following adjustment for other relevant disease risk
factors.

We demonstrate that EAT volume is an indepen-
dent predictor providing incremental value for post-
operative AF regardless of patient BMI, LA volume,
N-terminal pro–B-type natriuretic peptide, and other
AF risk factors, indicating an important role for EAT
in driving postoperative arrhythmogenesis. It is pro-
posed that proinflammatory cytokines diffuse locally
from dysfunctional EAT into the myocardium and
contribute toward atrial myopathy,18 which drives the
risk of AF.

STUDY LIMITATIONS. We did not have detailed
adiposity data (eg, waist-hip ratio) or mortality data
available within the SCOT-HEART trial population to
investigate the exact causes of noncardiac mortality
that could be driving our finding of elevated risk of

https://doi.org/10.1016/j.jcmg.2022.11.018
https://doi.org/10.1016/j.jcmg.2022.11.018


PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: The automated

quantification of EAT volume through an artificial intelligence

approach on routine CCTA scans may allow improvements in

disease risk assessment for cardiovascular events such as MI and

stroke.

TRANSLATIONAL OUTLOOK: The introduction of automated

EAT assessment into standard CCTA interpretation could add

significant value to patient care through enhanced prediction of

disease risk for conditions such as CAD, stroke, and AF.

J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 1 6 , N O . 6 , 2 0 2 3 West et al
J U N E 2 0 2 3 : 8 0 0 – 8 1 6 Automatic EAT Assessment for Risk Prediction

815
all-cause mortality conveyed by EAT volume. There
were only 4 cardiovascular deaths during the 5-year
follow-up in the SCOT-HEART trial, limiting any car-
diac mortality analysis. Other challenging clinical
CCTA populations exist, such as those with congenital
cardiac conditions, for which we lacked enough cases
for testing of the deep-learning algorithm. Short-term
AF risk data following cardiac surgery relied on
inpatient monitoring only, without device monitoring
following discharge.

CONCLUSIONS

We present a new deep-learning model that allows
accurate, reproducible, and rapid quantification of
EAT volume on routine CCTA scans. We demonstrate
that assessment of EAT volume can improve risk
assessment for cardiovascular and noncardiovascular
outcomes independently of other risk factors
including BMI. EAT volume is predictive of all-cause
mortality and noncardiac mortality, MI, and stroke.
EAT volume also conveys significant independent
risk of post–cardiac surgery AF. Incorporating auto-
mated EAT volume quantification in CCTA reading
protocols could improve global cardiometabolic risk
assessment and treatment planning for patients who
undergo CCTA investigation, independently of the
presence of coronary atherosclerosis.
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