
Non-invasive cardiovascular and vital signs monitoring techniques: review, 
challenges, and perspectives

Qi Yong a , Lichao Yang a , Attila Kardos b , Yifan Zhao a,*

a Faculty of Engineering and Applied Sciences, Cranfield University, Cranfield, Bedford MK43 0AL, UK
b Translational Cardiovascular Research Group, Department of Cardiology, Milton Keynes University Hospital NHS Foundation Trust, Milton Keynes MK6 5LD, UK

A R T I C L E  I N F O

Keywords:
Contactless cardiovascular monitoring
Doppler radar
Contactless ECG
Cardiovascular health

A B S T R A C T

Cardiovascular diseases are the leading cause of global fatalities, necessitating effective diagnostic solutions. 
Traditional methods, while valuable, often require invasive procedures or require subjects to remain stationary, 
limiting their real-time monitoring capability in dynamic environments. This article reviews the emerging field of 
contactless and distraction-free cardiovascular monitoring, which offers distraction-free, flexible, and user- 
friendly alternatives for enhanced accessibility. We examine various techniques, including radar-based 
methods, optical measurements, ballistocardiography, contactless electrocardiogram (ECG), and wearable de
vices, comparing their working principles, advantages, and limitations against traditional diagnosis methods. 
The novelty of this review lies in its comprehensive evaluation of these methods across eight key dimensions, 
including application breadth, time efficiency, reliability, distraction-free operation, safety, bandwidth, infor
mation value, and working distance. Another new perspective involves how advanced hardware, digital filters, 
and artificial intelligence (AI)-driven signal processing methods address challenges associated with relatively 
poor signal quality. Additionally, this article discusses these techniques’ key values on healthcare, challenges, 
and emerging opportunities.

1. Introduction

Cardiovascular disease accounts for a significant portion of global 
mortality, responsible for 32 % of deaths worldwide according to the 
World Health Organization (WHO) [1]. As a result, cardiovascular and 
vital monitoring has been a highly focused point of interest for several 
decades. Cardiovascular assessment comes with a wide range of pa
rameters, which can be measured with different techniques, primarily 
targeting mechanical signs, circulation dynamics, and electrical activ
ities of the heart. For example, cardiac structural abnormalities can be 
initially screened through phonocardiogram (PCG) or auscultation [2] 
and further confirmed via diagnostic imaging techniques like echocar
diogram (ultrasound) or chest X-rays. Cardiac performance dynamics 
are typically assessed via blood pressure measurement, ultrasound, or 
impedance cardiography (ICG). Meanwhile, the heart’s electrical ac
tivities are most accurately evaluated using an electrocardiogram (ECG) 
[3].

Proper monitoring and assessment of these parameters are crucial for 
the prevention and timely intervention of cardiac diseases. Cardiovas
cular abnormalities are often reflected in these vital signs, making 

continuous and accurate measurements essential not only for assessing 
cardiovascular health but also for predicting certain cardiovascular 
diseases and events. However, the above traditional monitoring 
methods are primarily employed in clinical settings, requiring trained 
medical personnel and specialised equipment. These methods also 
impose several limitations on patients, such as the need for sensors and 
wires that can cause discomfort [4], even leading to allergic reactions 
over long periods [5], and the requirement for patients to remain in 
specific positions during monitoring [6]. These constraints limit the use 
of traditional monitoring techniques in dynamic or real-life environ
ments, particularly during operative procedures such as working, 
driving, or gaming. Furthermore, some traditional medical methods of 
cardiovascular monitoring are highly invasive and can even pose risks to 
the patient. For instance, radiological imaging involves exposure to 
intense electromagnetic waves or ionising radiation, which can be 
harmful, especially with repeated use [7]. Invasive techniques, such as 
blood pressure monitoring through catheterisation or cardiovascular 
catheterisation itself, often require surgical procedures or the insertion 
of catheters into the body, increasing the potential for complications [8]. 
As a result, there is a growing demand for novel approaches to reduce 
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invasiveness, reduce distractions and enhance the user experience, 
enabling more accessible and patient-friendly cardiovascular moni
toring solutions. It should be noted that the intention is not to replace 
traditional techniques used in clinical settings, where they hold signif
icant diagnostic value, but rather to extend heart monitoring to a wider 
range of environments.

The advancement of mobile devices and wireless technologies has 
led to significant breakthroughs in emerging innovative measurement 
techniques. Current emerging distraction-free heart monitoring methods 
can be broadly categorised into two areas: wearable smart devices [9] 
and contactless monitoring. Wearable devices currently dominate the 
field and are widely used, while contactless approaches are still in active 
research and development. These technologies offer several advantages 
over traditional medical devices, including greater accessibility, 
enhanced user experience, reduced distractions, and the ability to 
operate without the need for medical professionals. Despite their con
venience, these technologies are not typically used for diagnostic pur
poses or approved for professional medical diagnoses. This is largely due 
to their susceptibility to interference and relatively lower reliability and 
accuracy. Depending on the specific implementation, these methods can 
be affected by various artefacts, such as environmental fluctuations, 
vibrations, and user movement, limiting their effectiveness in clinical 

settings.
This review provides the first comprehensive and systematic syn

thesis of emerging contactless and distraction-free cardiovascular 
monitoring techniques, a field that has so far remained fragmented and 
under-reviewed. While traditional cardiovascular monitoring methods 
are well established and extensively studied, newer approaches are 
typically only discussed in comparison to conventional techniques, 
without a broader perspective on their principles, advantages, and 
limitations. By analysing the working mechanisms of these methods, 
positioning them in relation to traditional approaches, and evaluating 
their attributes across multiple key dimensions, this paper offers a ho
listic view of their strengths and weaknesses. Furthermore, it highlights 
the challenges, opportunities, and future directions of contactless car
diovascular monitoring, providing valuable insights for researchers 
seeking an overview of the field, comparative analysis, or a foundation 
for advancing further research in this emerging area.

2. Methodology

A cardiovascular measurement and monitoring system typically 
combines a sensing device with an algorithmic protocol that acquires 
one or more inputs from specific sensors, processes and analyses the 

Fig. 1. Flowchart of the article and content selection process in the review.
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data, and generates measurement outcomes related to cardiovascular 
conditions and vital signs. This study presents a systematic literature 
review on non-invasive cardiovascular and vital signs monitoring tech
niques, conducted in accordance with Preferred Reporting Items for 
Systematic reviews and Meta-Analyses (PRISMA) 2020 guidelines to 
ensure transparency and reproducibility. The review comprised three 
main steps. First, the scope was defined to focus primarily on contactless 
and non-invasive methods, while also considering relevant contact- 
based techniques for context. Second, the identified methods were 
reviewed, with their advantages, limitations, and performance 
compared across multiple dimensions. Finally, the review highlighted 
key challenges, emerging opportunities, and potential directions for 
future improvements.

Fig. 1 provides a flowchart overview of how the articles and contents 
are being selected. Most of the included studies were indexed in major 
databases, such as Scopus and Web of Science (WoS), using a set of 
relevant keywords (e.g., contactless, cardiovascular monitoring, non- 
invasive, radar, ECG, wearable). Additional searches were conducted 
in Google Scholar and through general web searches to broaden 
coverage. The initial search retrieved more than 1300 results from da
tabases, and more than 150 results from additional methods, which were 
then deduplicated and filtered according to predefined conditions to 
exclude any unsuitable results. Recent publications were prioritised to 
capture state-of-the-art and emerging technologies, while non-English 
articles and sources from unverifiable outlets were excluded. A total of 
500 articles were being processed in the retrieval process for full text. 
With further screening being applied to the title, abstract, full-text, and 
removing articles with unavailable full-texts, a total of 272 articles were 
retained for detailed assessment of quality, relevance, and compatibility. 
This detailed assessment results in a total of 146 articles being reserved 
as candidates. Ultimately, 123 articles were included and reviewed in 
this study.

Table 1 provides an overview of current cardiac measurement and 
diagnostic approaches, including both traditional methods and 
emerging innovations such as wearable devices and contactless 
methods. It compares several key aspects, including operational con
straints (such as working distance and required conditions), invasive
ness (contact requirements, potential risks, and time consumption), 
underlying mechanisms (detection signs and working principles), and 
key performance metrics (susceptibility to interference, accuracy, and 
diagnostic value). The table lists the constraints (working distance and 
special conditions), invasiveness (contact requirements, harm, and time 
consumption), mechanisms (signs of detection and working principle), 
as well as key performance (susceptibility to interference, accuracy and 
diagnosis value). The table is based on the authors’ own analysis and 
synthesis of the reviewed literature and existing technologies, with 
references included in the corresponding cells.

The article is organised as follows: Section 3 provides a brief over
view of traditional cardiovascular monitoring methods, while Section 4
critically reviews emerging contactless and distraction-free techniques. 
Section 5 discusses key challenges, opportunities, and potential future 
directions, and Section 6 presents the conclusions.

3. Classic techniques

The most commonly used methods for medical screening and diag
nosis of heart conditions include PCG, PPG, ECG, and blood pressure 
measurements. These techniques offer valuable diagnostic information 
while maintaining a relatively straightforward and accessible approach, 
making them highly effective for routine use in clinical settings. Classic 
methods are reviewed in this article because they serve as widely 
accepted ground-truth approaches in medical areas. Furthermore, the 
principles behind these techniques form the foundation for many newer 
approaches, which often build on and extend these established 
approaches.

3.1. Heart auscultation and phonocardiogram

Heart auscultation is one of the oldest and most widely used methods 
for cardiac diagnosis [11], where heart sounds are auscultated in order 
to assess the heart’s mechanical condition. Through this approach, cli
nicians can identify cardiac murmurs, abnormal heart sounds, and 
certain arrhythmias. PCG operates on a similarly straightforward prin
ciple, capturing cardiac acoustic signals using a microphone or acoustic 
sensor. These signals are then visualised as waveforms or spectrograms 
for analysis. While PCG is closely related to traditional heart ausculta
tion, it offers a more precise and detailed evaluation of the heart’s 
acoustics.

3.2. Photoplethysmogram

PPG is a non-invasive method for monitoring heart rate and blood 
oximetry from the skin surface [12]. It is widely used in both consumer 
smart devices and professional medical equipment. As shown in Fig. 2, it 
operates through absorbance-based measurements to generate a pulse 
wave. Advanced PPG sensors typically use two light sources, most 
commonly red and infrared (IR) light. These light sources flash back-to- 
back at the sampling frequency while a photodiode simultaneously de
tects the residual light. The photodiode’s output is inversely propor
tional to the absorbance and pulse wave intensity. This signal is then 
conditioned, amplified, and synchronised with the light pulses. During 
each sampling period, two intensity values —one from red light and one 
from IR —are captured, allowing the construction of an absorbance 
graph from the data stream. The PPG controller processes these two 
traces, utilising spare samples for ambient light cancellation, filtering, 
and signal processing. From the processed PPG data, algorithms can then 
calculate key metrics such as SpO2 (blood oxygen saturation) and heart 
rate.

3.3. Electrocardiogram

Among all cardiac measurement and diagnostic methods, ECG is one 
of the most critical tools for assessing heart functions, and it is widely 
used for clinical interpretation [25]. It measures the heart’s electrical 
signals as projected onto the body’s surface, known as the body-surface 
EMF. Fig. 3 illustrates the basic working principle of an ECG lead. 
Contact electrodes placed on the body surface detect these electrical 
signals and transmit them to an instrumentation amplifier with high 
input impedance. The amplifier captures the differential voltage, am
plifies it, and passes the signal through analogue filtering circuits before 
it is sampled and acquired as digital data. Once the ECG signal is digi
tised, it typically undergoes further digital signal processing for addi
tional filtering and to calculate specific cardiac parameters.

ECG signals are inherently weak and highly susceptible to interfer
ence [26,27], such as mains power line noise or static discharges. To 
prevent the instrumentation amplifier from being overwhelmed by these 
interferences and drifts, a right-leg drive circuit is often used to inject a 
reversed common-mode offset voltage, maintaining control over the 
input swings of the amplifier [28]. Depending on the design, the mains 
power line notch filter can be implemented either in the analogue or 
digital domain. In multi-lead professional ECG systems, multiple 
instrumentation amplifiers and acquisition channels are employed. 
These systems use the standard 12-lead electrode configuration and 
capture waveforms concurrently. For a typical 12-lead ECG setup, 
around 8 to 9 acquisition channels are used, where leads like Lead I and 
Lead II are measured directly, and other leads such as Lead III to Lead 
aVF are derived using formulas. The precordial leads (V1–V6) can be 
measured either by calculating the voltage difference between the pre
cordial electrodes and a buffered virtual ground point or by deriving the 
difference between the precordial and limb lead electrodes.

ECG offers a comprehensive diagnostic framework, allowing clini
cians to identify a wide range of cardiac conditions by analysing the 
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Table 1 
A summary of current cardiac measurement and diagnosis methods.

Technique WorkingDistance Special Condition Harm Time 
Consumption

Signs of Detection Working Principle Interference Accuracy Diagnosis- 
Value

Mechanical 
Methods

Heart Auscultation, 
Phonocardiogram 
(PCG)

Skin Contact − − Short Cardiac Phonography Acoustical pickup 
[10,11]

Med-High Low Low

Photoplethysmogram 
(PPG)

Skin Contact − − Short Pulse Wave Optical Absorption 
[12]

High Low-Med 
[13]

Very Low

Common Blood 
Pressure

Skin Contact, 
Mechanical- 
Pressure

− − Short Blood Pressure Waves Pressurization of 
SensorObtaining 
Reaction Plot

Med-High Medium Low

Ambulatory blood 
pressure (ABP)

Contact, Invasive- 
Sensor

Injection of Sensor Invasive 
Monitoring

Long Artery Blood Pressure Pressure Sensor Low High Medium

Seismocardiography 
(SCG)

Contact − − Short Cardiac Vibrography Accelerometer 
[14,15]

Medium Medium Low

Ballistocardiography 
(BCG)

No Skin Contact, 
Requires 
Mechanical 
Pressure

Sitting Still / Lying − Short BallistoCardioGraphyVibrations 
caused by aorta

Pressure Sensor, 
Micromovement 
Pickup, 
Amplification 
[16,17]

Very High Low-Med Low

Radar-based(Cardiac 
Baseband)

5 cm ~ 150 cm − − Long Body Surface-Cardiac Mechanical 
Movements

Doppler Radar, 
Baseband estimation 
(Long Spectrum) 
[18]

High Low-Med Low

Radar-based(Cardiac 
Wideband)

5 cm ~ 150 cm − − Short Body Surface-Cardiac Mechanical 
Movements, Vibrography, 
Phonogram

Doppler Radar, 
Demodulation, 
Signal Extraction and 
Processing [19]

Medium Med- 
High

Med

Electrical 
Methods

Electrocardiogram 
(ECG)

Skin Contact, 
Electrical

− − Short Cardiac Electrical Activity Body Surface 
Electromotive force 
(EMF)Caused by 
Cardiac Muscle 
Activities

Low- 
Medium

Med- 
High

Med-High

Contactless ECG <5 cm − − Short Capacitively-Coupled Body-Surface 
Electrical Activity

High Impedance 
Capacitive-Coupled 
Sensor, 
Amplification

Very High Low-Med Med

Impedance 
cardiography (ICG)

Skin Contact, 
Electrical

− − Short Cardiac Volumetric Change HF Current Injection 
Impedance 
Estimation [20,21]

Medium Medium Low

MagnetoCardioGram 
(MCG)

<20 cm Usually 
ElectroMagnetically 
Shielded

− Medium- 
Long

Localized EMFs Magnetic Field 
generated by Cardiac 
EMFs [22]

Med-High Med- 
High

High 
[22,23]

Imaging 
Methods

Echocardiogram 
(Ultrasound)

Skin Contact, 
Acoustic-Coupling

− Occupational 
harm to operator. 
[24]

Short- 
Medium

Cardiac Echography Imaging Ultrasonic 
Echography

Med-High Med- 
High

High

Magnetic resonance 
imaging (MRI)

<0.5 m Strong magnetic field Pacemakers; Metal 
Objects; 
Radiofrequency 
Burns

Long Cardiac MRI Imaging Nucleo Magnetic- 
Resonance Imaging

Low High High

CT <0.5 m X-Ray, Highly 
specialised 
Professional Device

Ionising Radiation Short Cardiac Radiological Imaging Tomography,3D X- 
Ray Imaging 
Reconstruction

Low High High
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heart’s electrical activity [25]. It is particularly useful for diagnosing 
cardiac arrhythmias, heart attacks, conduction system abnormalities, 
and more. Each condition is associated with specific ECG waveform 
signatures and measurement ranges. For example, ST segment de
viations are indicative of heart attacks, while abnormal PR intervals or 
QRS complexes suggest conduction system disorders or arrhythmias. 
Advances in computing technology have enabled automated ECG mea
surements and analysis, allowing certain abnormalities to be flagged by 
software. However, the final diagnosis remains the responsibility of a 
cardiologist, as computer-aided systems often fall short in complex cases 
where human expertise provides superior diagnostic accuracy. To better 
assist human-interpretation of the ECG, certain interaction models have 
been developed to reduce cognitive load and improve the overall ac
curacies of the ECG interpreters [29].

Although ECG is considered a gold standard in cardiac diagnosis, it is 
not the sole method for evaluating heart functions. This is because ECG 
only measures the electrical activity of the heart, limiting its scope. The 
cardiovascular and circulatory systems are complex, comprising elec
trical pacemaker systems, conduction pathways, muscular function, and 
mechanical components. Abnormalities in the heart’s mechanical sys
tem, structural issues, or problems in the surrounding blood vessels can 
be difficult, if not impossible, to detect through ECG alone. This is where 
cardiac imaging techniques come into play, offering a more compre
hensive view of the heart’s structure and function.

3.4. Imaging methods

These methods are usually considered diagnosis approaches, not for 
monitoring. The most widely used cardiac imaging technique is ultra
sound, commonly referred to as an echocardiogram. This method uses 

an array of transmitted ultrasound waves and captures their reflections 
to create detailed images of the heart [30]. Advanced ultrasound tech
niques, such as Doppler imaging, are often employed to provide addi
tional insights, such as blood flow velocity. An echocardiogram 
produces real-time video of specific areas of the heart, allowing visual
isation and diagnosis of mechanical and structural abnormalities, such 
as heart failure, atrial septal defects (ASD), ventricular septal defects 
(VSD), and valve disorders. It can also estimate cardiac performance 
metrics, such as stroke volume. Like ECG, echocardiography is mini
mally invasive, requiring only access to the chest area. However, it is 
more labour-intensive because obtaining clear images requires precise 
positioning of the ultrasound probe at specific angles between the ribs. 
The probe must be frequently adjusted, and the operator must simul
taneously manipulate the console to achieve a comprehensive view of 
the heart [31]. This process often takes longer than an ECG, causes more 
patient discomfort due to required body positioning and constant probe 
movement, and is impractical for continuous monitoring due to the 
complexity of the setup. Moreover, over the years, a high proportion of 
sonographers suffered from repetitive shoulder injuries [24] and have 
been out of work for a long time or left the profession. One of the key 
limitations of echocardiography is its relatively low image resolution 
[32]. Cardiac structures can be difficult to discern, making it unsuitable 
for diagnosing detailed conditions such as coronary artery disease. 
Additionally, operating an echocardiogram is a highly specialised skill, 
requiring extensive training for accurate diagnosis. The quality of the 
imaging and the precision of the diagnosis largely depend on the 
expertise of the sonographers.

The disadvantages of the above-mentioned echocardiogram are 
compensated by advanced and aggressive imaging methods such as CT 
(Computed Tomography) and MRI (Magnetic Resonance Imaging). 

Fig. 2. Working principle diagram of a PPG sensor system.

Fig. 3. Simplified working principle diagram of ECG System (1 Lead).

Q. Yong et al.                                                                                                                                                                                                                                    Measurement 258 (2026) 119472 

5 



Cardiac X-rays and CT scans use continuous X-ray imaging to create 
detailed 3D views of heart structure, providing far superior image 
quality. These methods allow for the visualisation of not only cardiac 
structures but also critical risk factors like blood vessel blockages, pla
ques, and other abnormalities. Imaging can be further enhanced with 
the use of contrast agents to perform angiograms, offering a detailed 
view of coronary blood vessels and detecting hidden issues such as 
micro-blockages and myocardial bridges.

However, the use of X-ray and CT imaging comes with significant 
costs. X-rays used in these procedures involve ionising radiation, and 
cardiac CT scans typically require comparatively higher radiation doses 
in order to obtain higher image quality of the cardiac system [33]. 
Additionally, the injection of contrast agents is an invasive procedure, 
which can pose risks in certain cases. As a result, cardiac X-rays and CT 
scans are not only labour-intensive and require specialised expertise but 
also carry potential harm to the patient. Due to these risks, cardiac CT 
imaging is generally reserved for situations where the potential benefits 
clearly outweigh the harms, such as in cases of suspected heart attacks or 
other serious cardiac conditions.

Cardiac MR Imaging (CMR) has been developed to address some of 
the issues associated with cardiac X-ray and CT imaging, offering dy
namic imaging of the heart through MRI technology. CMR provides a 
more comprehensive view of cardiac tissues by utilising different MRI 
sequences and imaging configurations, allowing not only the visual
isation of the heart’s mechanical structures but also the detection of 
issues such as myocardial scarring, perfusion defects, and other tissue 
abnormalities. However, CMR faces its own set of challenges, particu
larly due to the complexity of MRI and the heart’s constant motion. The 
process is highly time-consuming, as it requires MRI scans with high 
temporal resolution that must be synchronised with ECG signals to 
capture images at precise moments in the cardiac cycle. This signifi
cantly increases the time required for the procedure, making it difficult 
to perform on certain patients. Additionally, CMR is still an evolving 
field with fewer clinical applications compared to more traditional 
diagnostic methods. The need for specialised equipment and setups 
makes CMR both labour-intensive and costly, limiting its availability in 
many hospitals. There are also inherent risks and limitations associated 
with MRI technology. The strong magnetic fields used during the pro
cedure pose a danger to patients with metal implants, such as pace
makers, making them unsuitable for MRI. Furthermore, the 
radiofrequency (RF) energy emitted during MRI can, in rare cases, cause 
tissue burns, adding another layer of risk to the procedure.

4. Distraction-Free and contactless techniques

The trade-offs between functionality, safety, and invasiveness in 
traditional diagnostic methods have driven the development of inno
vative alternatives. These new methods aim to capture partial mea
surements that are typically obtained through more invasive or 
distractive techniques, but in a more distraction free manner. They 
primarily focus on external mechanical and electrical signals of the 
heart. Recent advancements have led to the development of several 
innovative measurement techniques, such as radar-cardiogram [34], 
ballistocardiogram [35], seismocardiogram (SCG) [15], and contactless 
ECG. These methods seek to provide valuable diagnostic information 
while minimising distractions. The working principles and critical 
evaluation of these techniques are discussed in this section.

4.1. Camera-based or optical measurements

In video-based heartbeat detection, two primary algorithms are 
commonly used: colour-based detection and micro-movement amplifi
cation. The colour-based approach is the most widely adopted, tracking 
subtle variations from a specific hotspot area of the video to obtain the 
pulse waveform and measure heart rate [36–38]. This method operates 
by detecting subtle skin colour changes due to pulse wave-induced 

expansions in capillary blood vessels. This approach is relatively easy to 
implement but is highly sensitive to environment and video quality. 
Light fluctuations, subject movements, camera noises, and video 
compression can severely affect results. Therefore, its real-world appli
cations are limited, and this approach is primarily used in controlled 
experiment venues.

Micro-movement amplification focuses on amplifying microscopic 
skin movements generated by pulses in the arteries. These subtle 
movements are algorithmically exaggerated to enhance visibility [39]. 
While micromovement amplification is better suited for detecting vi
brations and is somewhat more resilient to lighting changes and colour 
variations, it demands higher video quality, stable focus, and precise 
device calibration to achieve accuracy. It is also sensitive to motion 
artefacts and vibrational noise, which limits its use primarily to specific 
applications, and respiration monitoring [40], rather than widespread 
deployment of cardiovascular signs monitoring.

4.2. Radar-based approaches

In comparison to camera-based or optical measurements, radar- 
based approaches are relatively more reliable and accurate due to 
their reduced susceptibility to environmental interference. Radar sys
tems utilise various setups and algorithms, leading to considerable 
variability in accuracy and effective working distance.

4.2.1. Continuous wave (CW) Doppler radar
Most current radar-based systems employ low-power continuous 

wave Doppler radar, where the radar front-end emits a constant fre
quency radio-frequency (RF) wave. As illustrated in Fig. 4, this wave 
reflects off the chest wall and is down-converted to Doppler shift base- 
band signals that correspond to chest wall motion. Many studies 
attempt to estimate heart rate directly without demodulating these 
signals to achieve seemingly robust results with simple hardware by 
using methods such as long-window spectrum [41], autocorrelation 
[42] or time-domain peak-detection [43]. However, these approaches 
often result in information loss and reduced accuracy, even function 
failure in certain cases [42]. Their main limitations result from a general 
lack of beam focus, the presence of null points of un-demodulated, 
single-channel CW Doppler radar signals [44], and susceptibility to 
clutter and artefacts. These methods also focus on the fundamental 
frequency of precordial movements, which can be absent in certain in
dividuals, leading to non-functional results in some experiments. Addi
tionally, methods such as long-window spectrum analysis and 
autocorrelation can perform less effectively in cases of fluctuating heart 
rates (e.g., arrhythmias), where the spectral peak distribution becomes 
wider and is more easily masked by noise and artefacts, particularly in 
single-channel, un-demodulated CW radar setups.

To address the drawback of direct-detection methods, several 
demodulation algorithms including Arc-tangent and DACM (Differential 
and Cross-Multiplication) algorithms, as well as radar front-end archi
tectures (e.g., heterodyne digital quadrature demodulation [45], 
frequency-tracking radars [46]) were introduced to enhance signal 
quality and robustness against suboptimal environments. The Arc- 
tangent demodulation algorithm, recognised as the most popular 
demodulation technique among CW quadrature radars, is widely utilised 
because of its generic stability [47] and low computational overhead. 
DACM focuses on further reducing distortion in the demodulation pro
cess and is primarily used for high-fidelity vibrational detection [48]. 
These algorithms eliminate null points and enable operation over a 
wider range of distances. However, some implementations still face 
significant challenges. Demodulation of such radar signals requires high 
precision in data acquisition and sampling rates, as well as an effective 
heartbeat detection algorithm. Many existing systems struggle with 
capturing per-beat heart rhythms due to the use of long-running detec
tion windows for higher signal-to-noise ratio, leading to a loss of tem
poral information. Additionally, many CW implementations suffer from 
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limited effective signal bandwidth due to the sampling rates. This lim
itation can result in signal degradation due to aliasing and makes them 
unsuitable for retrieving vibrograph or phonocardiograph information. 
It is worth noting that frequency-tracking [46] or phase-tracking active 
radars [49] have been explored as alternative solutions to address the 
null-point issues in single-channel CW radars. These methods utilise 
active oscillators and Phase-Locked Loop with active control to retrieve 
motion information, operating with a single channel architecture and no 
null points. They have demonstrated the capability to detect respiration 
and heart rate in experiments. However, these methods involve active 
control and feedback systems along with active radars, making it more 
complicated than most quadrature demodulation implementations. The 
involvement of active control can reduce their stability compared to 
static and passive approaches under certain conditions.

4.2.2. Frequency modulated continuous wave radars
Some research has utilised Frequency Modulated Continuous Wave 

(FWCW) radars, which use frequency-modulated RF waves and analyse 
intermediate frequency (IF) signals to obtain ranging information. 
FMCW radars often use Fast Fourier Transform (FFT) and phase 
unwrapping for frequency measurements. They offer the advantage of 
reduced calibration requirements but come with several challenges.

FMCW radars typically measure ranging information only during a 
single sweep cycle. The sweep repetition frequency (SRF) and ranging 
accuracy are often a trade-off. To measure cardiac vibrations accurately, 
FMCW radars generally require a low SRF of several hundred Hz, 
sometimes even down to 20 Hz [50], limited by the hardware, in order 
to preserve ranging accuracy. This restriction greatly limits the effective 
bandwidth and causes aliasing issues, especially for high-frequency vi
brations. The heart vibration spectrum can reach several hundred Hz or 
even exceed 1 kHz in cases of cardiac murmurs [10,51].

A low effective sampling rate combined with noise and even aliasing 
usually causes significant deterioration of signal quality in the time 
domain and the frequency-domain effective bandwidth. Thus heart-rate 
detection methods for FMCW radars often focus on cardiac baseband 
signals [52], which sacrifice accuracy and temporal information, even 
with advanced detection methods [53]. While hardware improvements 
and complex detection algorithms can somewhat enhance heart-rate 
measurement accuracy [50], FMCW radar systems still rely on 
windowed detection methods and cannot detect individual heartbeats.

Moreover, FMCW radars usually operate at very high frequencies 
(around 76 GHz to 81 GHz) to achieve a legally permissible large 
bandwidth. These high frequencies can limit penetration through air 
and clothing, reducing both accuracy and effective range.

4.2.3. Highlights and limitations of Radar-based approaches
To achieve the desired performance and overcome the drawbacks 

outlined above, a combination of carefully designed hardware with 
dedicated software algorithms is necessary. Yong et al. (2025) devel
oped a radar-based contactless vital signs monitoring system using a K- 

Band tunable radar [19]. This system, equipped with a high- 
performance data acquisition system and advanced signal processing 
algorithms, demonstrated reliable and accurate performance across a 
wide range of experiments. It effectively measured respiration and heart 
rates, while providing vibrograph and phonocardiogram information. 
However, due to the nature of radar-based systems, which utilise array 
antennas for beamforming, the working distance was limited to 2.5 m, 
and the maximum deflection angle was 45 degrees.

Despite recent advancements, radar-based approaches are still not 
yet a fully complete solution for distraction-free and contactless cardiac 
monitoring. These systems detect minor movements and vibrations from 
a distance, possessing the following limitations. Firstly, these techniques 
primarily capture precordial mechanical signs. Without complementary 
measurement techniques, the scope of information they provide remains 
relatively limited. While precordial mechanical signs contain certain 
valuable features, a lot of other important cardiovascular indicators can 
only be obtained with an electrocardiogram. Secondly, similar to other 
distraction-free or contactless methods, radar-based systems are 
vulnerable to both human and environmental factors, where compli
cated algorithms are usually required to mitigate the effects of motion 
artefacts [18]. The accuracy of measurements depends on maintaining 
proper positioning [54] and minimising movement to ensure the radar 
beam is directed at the chest area. Significant shifts or changes in po
sition can disrupt the radar beam’s focus, resulting in inaccurate data. 
Thirdly, there is currently no established set of standards for radar-based 
cardiac measurements, including those for heart rate and other param
eters, which limits their broader adoption in medical and healthcare 
settings. To fully realise and further enhance the value of these systems, 
coordination with other sensor technologies and algorithms is essential.

4.3. Contactless ECG-based approaches

Contactless ECG monitoring is not an entirely new concept and has 
been explored over the past two decades as an innovative method for 
reducing the distractions and constraints of traditional ECG monitoring. 
While it has been proven that recognisable ECG waveforms can be ob
tained through contactless methods, this approach has not yet become 
practical for professional medical use or general health monitoring. This 
is primarily due to significant challenges related to signal uncertainty 
and waveform integrity.

Popular implementations of contactless ECG monitoring often 
involve embedded electrodes in seat backs, bed mats, or even toilet seats 
[55], where the body’s surface ECG electromotive force (EMF) is picked 
up capacitively, either by electrodes made with special materials [56], 
or with common PCBs but with a specifically designed amplifier [57]. 
However, these methods introduce considerable uncertainty, as the 
captured waveforms are prone to severe distortion caused by body 
movements, vibrations, and environmental factors. Additionally, the 
varying distance between the body and the electrodes acts as a high-pass 
capacitive filter, which continually shifts the waveform, further 

Fig. 4. A working principle diagram of quadrature Doppler-radar based cardiac monitoring systems.
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complicating accurate signal acquisition.
Waveform integrity is a critical issue that limits the adoption of 

contactless ECG as a reliable monitoring and diagnostic tool. Traditional 
ECG systems, particularly the 12-lead standard, are highly dependent on 
precise electrode placement [58–60], with each lead representing a 
specific angle in the vectorised cardiac space and playing a crucial role 
in diagnosis [61]. Diagnostic criteria are largely based on the waveforms 
observed on these leads, making accurate electrode placement 
essential—a task that typically requires medical professionals. Mis
placed electrodes, depending on severity, can result in a range of diag
nosis issues, ranging from artefacts and waveform shifts that severely 
impact diagnostic accuracy to even causing misdiagnosis [62]. In 
contrast, contactless ECG methods struggle with arbitrary and shifted 
electrode placement, leading to ECG waveforms that do not align with 
standard lead axes. As a result, these methods fail to provide diagnostic 
value based on current ECG criteria. The only reliable metric that can be 
consistently obtained from contactless ECG is heart rate, which can be 
measured by detecting the QRS complex. This limitation is a significant 
reason why contactless ECG approaches have not gained a strong foot
hold in the market, as more reliable, cost-effective, and easier methods 
are already available for heart rate measurement.

One intriguing approach introduced by [63] uses Doppler radar to 
achieve contactless ECG monitoring. This research takes a distinctly 
different path compared to other studies in the field. However, the true 
value of this approach, particularly in relation to ECG monitoring, re
mains highly uncertain and questionable. The method relies entirely on 
generative and synthetic techniques to construct the ECG waveform 
from the mechanical signals detected by the Doppler radar, utilising an 
AI model trained on existing datasets. While the experimental results 
produced waveforms that appeared visually comparable to actual ECG 
waveforms, the synthesised output from the AI model lacks genuine 
clinical significance. This is because the generated waveform does not 
originate from any actual cardiac electrical activity. Consequently, this 
approach is likely to expose its fundamental flaw when applied to 
samples that deviate significantly from the training data, leading to 
inaccurate results. The trained model is also prone to overfitting and 
poor generalisation, as the relationship between mechanical wave in
puts and synthesised electrical activity outputs is not inherently valid. 
This limitation results in its impracticality for realistic ECG monitoring, 
reducing it to a technique akin to radar-based heart rate monitoring 
rather than a viable method for comprehensive ECG analysis.

4.4. Magnetocardiogram

A recently developed method worth highlighting is the magneto
cardiogram (MCG), which detects the weak magnetic fields generated by 
cardiac electrical activity. During cardiac action potentials, changes in 
the cardiac electromotive force (EMF) create vectors observable in ECG. 
These same currents also generate extremely weak magnetic fields, 
which MCG is designed to measure. MCG uses highly sensitive magnetic 
sensors positioned near the cardiac region to capture these fields, 
acquiring signals through one or more channels and processing them 
accordingly. The resulting waveforms are highly similar to ECG and 
share many standard features, including the P wave, QRS complex, T 
wave, and diagnostic markers such as ST-segment elevation or depres
sion. Because MCG captures the magnetic field of the cardiac EMF, its 
waveforms along certain vector orientations correspond closely to ECG 
leads with similar orientations. A key advantage of MCG is its ability to 
provide localised and focused measurements, whereas ECG signals often 
represent a superposition of multiple EMF vectors. This makes MCG 
particularly promising in detecting tissue pathologies such as scar tissue, 
identifying arrhythmia foci, and assessing myocardial ischemia [23]. 
Furthermore, multi-channel MCG enables magnetic source imaging, 
which can improve the spatial localisation of the underlying current 
sources [22].

MCG was first conceptualised in the 1960s, but several factors have 

limited its adoption. The magnetic fields generated by the heart are 
extremely weak, typically in the pico-tesla (pT) range [22], necessitating 
the use of highly sensitive sensors such as tunnel magnetoresistance 
(TMR) sensors [64], superconducting quantum interference devices 
(SQUIDs) [65], and optically pumped magnetometers (OPMs) [66]. 
Moreover, the signals are easily corrupted by background magnetic 
noise from natural, electrical, and infrastructural sources, as well as 
from the MCG system itself. As a result, heavy shielding, sophisticated 
filtering, and averaging techniques are often required to obtain usable 
waveforms [67]. These technical challenges, combined with the high 
cost of equipment and operation, currently limit the use of MCG to 
specialised cardiology laboratories. Consequently, it has not yet been 
widely adopted in general hospitals, portable healthcare electronic 
systems, or wearable devices.

4.5. Wearable devices

Thanks to advancements in microelectronics and embedded pro
cessors, wearable smart devices − particularly smartwatches − have 
seen widespread adoption in recent years. Many of today’s smart
watches are equipped with PPG sensors for heart rate monitoring and, in 
some cases, SpO2 measurement. These devices are popular because they 
offer a convenient, minimally distracting way to automatically monitor 
heart rate while also providing the additional functions of a mobile 
device.

For consumers, these smartwatches maintain a good balance be
tween user experience and reliability, delivering reasonably accurate 
measurements with minimal intrusion. However, they are not designed 
to achieve the highest levels of accuracy, measurement depth, or true 
non-invasive and distract-free monitoring. Their readings are usually 
not approved for medical diagnosis, as large artefacts can frequently 
occur, sometimes accounting for up to half of the signal [13]. Addi
tionally, their use is limited in situations where smart devices are pro
hibited or where patients are unable to wear them due to physical 
limitations. Some users also find wearing smartwatches uncomfortable 
or disruptive to their daily lives, viewing them as more of an interference 
than a benefit.

With the advancement of artificial intelligence, the value of wearable 
devices is further explored. Recent studies aim to expand the function
ality and values of the specialised wearable devices designed for health 
monitoring applications. Simultaneous access to multiple types of sensor 
data gives them a significant advantage as they can perform more 
advanced algorithms to obtain more in-depth measurements [68]. For 
example, some specialised smart devices can provide blood pressure 
measurement by using data from pulse waveform [69], limb ballisto
cardiogram [70], or even embedded micro radars watches (such as 
product like RadarPulse, which utilises micro radars to capture pulse 
waveforms). Along with specialised algorithms and AI, these devices can 
provide more comprehensive insights into cardiovascular health than 
traditional wearables. However, despite their enhanced capabilities, 
these devices are not yet suitable for medical diagnostic applications, as 
they still face similar limitations and reliability issues as traditional 
smartwatches. Consequently, their application remains largely in the 
research and experimental stages.

Another emerging branch of wearable devices is skin-patch or in- 
body devices. These devices are usually very small and can be fitted to 
flexible materials, such as adhesion tape base, which holds the elec
trodes and allows them to be affixed to the body [71], often in the 
precordial area [20]. Unlike smartwatches, these devices mainly focus 
on innovative material [72] and circuitry design [73]. They are usually 
equipped with simple data-acquisition systems and designed to consume 
very low power [74], which allows them to be powered by a micro 
battery for extended periods. In order to retrieve recorded data, they 
usually would require removing from the body, or through some near- 
field communication approaches. Due to their tape-based design, they 
require regular replacements, either of the electrodes or the whole 
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sensor, further increasing cost and operation complexity. These methods 
are not yet widely applied in medical diagnosis, as they generally pro
vide less information than traditional contact-based wearable devices (e. 
g., continuous ECG and blood pressure monitoring).

4.6. Ballistocardiography

Unlike other popular cardiovascular monitoring techniques, ballis
tocardiography monitors cardiovascular activity indirectly by detecting 
the ballistic forces generated by the pulse wave as it travels through the 
aorta [75]. When the heart contracts, it pushes blood into the aorta, the 
body’s largest blood vessel, creating a pulse wave. This wave travels 
from the ascending aorta, passes through the aortic arch, and reaches the 
descending aorta. The momentum of the blood generates a force oppo
site to the pulse wave’s direction of travel, which is the signal measured 
in BCG.

Fig. 5 illustrates the simplified working principle of BCG systems, 
which typically use specialised weighing scales or weight sensors with 
amplifying circuits to capture the signal. The resulting time-domain 
waveform can then be used to service several key cardiovascular met
rics, often with the help of ECG or other reference signals [21].

Although BCG is not yet widely used in medical practice, primarily 
due to its susceptibility to movement artefacts and noise, some studies 
highlight its potential applications. These include generic heartbeat 
detector [76], low-cost telemedicine [34], cuffless blood pressure mea
surement [70], and cardiac output estimation [21], which could be 
valuable in certain clinical scenarios.

5. Key values, challenges and emerging opportunities

While the distraction-free and contactless measurement techniques 
discussed above have limitations in flexibility, accuracy, and reliability, 
many still offer valuable direct or indirect cardiovascular insights. Fig. 6
provides a summary of current cardiovascular monitoring and mea
surement techniques, evaluating them based on distractions, accuracy, 
and overall value. A clear trend emerges, suggesting that accuracy and 
value are generally correlated with the level of distractions. However, 
there are notable exceptions where less distracting methods offer sur
prisingly high value or accuracy. Cardiological vibrograph information 
(including SCG and PCG), electrocardiography, and BCG stand out as 
key areas of interest due to their potential to deliver crucial cardiovas
cular data with minimal intrusion on the user experience.

The techniques’ advantages are further rated in eight perspectives, 
including application width, time efficiency, reliability, distraction free, 
harmlessness, bandwidth, information value and working distance. Each 
technique is evaluated across eight perspectives, with scores ranging 
from 0 (worst) to 10 (best). Scores are assigned by comparing a tech
nique’s performance in each perspective against the optimal 

performance for that measurement sign and the commonly recognised 
standard. For example, the “time consumption” dimension is assessed 
relative to the typical expectation of a heart rate measurement, which is 
only a few seconds. If a method requires five minutes to obtain a reading, 
it will receive a very low score (0). In contrast, if it provides per-beat 
heart rate measurements in real time, it will receive a very high score 
(10). Intermediate scores are determined using the same criteria, with 
performance mapped linearly between 0 and 10.

Fig. 7 presents a comparison of each technique’s percentage advan
tages across perspectives, according to the normalised scores. Normal
isation to a percentage scale highlights the leading techniques for each 
perspective. Fig. 8 provides a detailed per-method breakdown across all 
perspectives, while Fig. 9 offers a normalised, perspective-by- 
perspective view that clarifies the relative weight of each perspective 
with respect to the evaluated techniques.

Figs. 7 – 9 indicate that the radar-based approaches and contactless 
ECG approaches provide the best overall performances. To fully explore 
these two outstanding methods, detailed discussions can be found 
below.

5.1. Radar-derived seismocardiogram and phonocardiogram

With appropriate hardware configurations and advanced software 
processing, Doppler radars can provide highly valuable information for 
cardiovascular vibrography. These radars can effectively parse and 
extract signals that reveal not only cardiovascular movements but also 
SCG and PCG.

SCG is a relatively well-researched area [14], and it is often used in 
wearable technology, where gyroscopes [77] or accelerometers [78] are 
typically used to capture vibrography data. SCG is often employed to 
assess cardiac function [16], analyse cardiopulmonary physiological 
changes [79], examine heart failure [80,81] and evaluate recovery 
outcomes [82]. When properly applied, it can provide a wealth of 
valuable information [83]. On the other hand, PCG captures akin data 
but focuses on higher-frequency and broader-band acoustic signals, 
making it useful for diagnosing physical cardiac abnormalities such as 
stenosis [84] and valve issues, as well as a generic cardiac dynamics 
indicator [85], or even as a way of examining heart failure [86,87]. 
Another intriguing indicator is the low-frequency precordial movement 
pattern, which reflects volumetric and pressure changes in the cardio
vascular system [88]. Although this sign varies significantly from person 
to person, it remains valuable when combined with vibrography data 
and can also be captured through radar measurements.

For radar-based approaches, ensuring fidelity and effective band
width of the signal is the key to efficient information extraction. When 
properly utilised, the mechanical signals in the chest area can provide a 
wide range of valuable information, such as SCG, PCG, and basic 
movement patterns, which were usually explored using contact-based 

Fig. 5. Simplified schematic diagram of a ballistocardiogram measurement system.
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sensors [89]. Radar-based SCG approaches have also been investigated 
due to its appealing technology [90], as it can provide convenient and 
timely monitoring of the SCG without the need for special equipment or 
in a specific environment.

5.2. Contactless electrocardiogram

Although concerns regarding signal quality and uncertainty pose 
significant obstacles to their application, these methods are not without 
functional value. ECG provides a direct and instantaneous reflection of 

Fig. 6. A comparison of current cardiovascular monitoring techniques in terms of invasiveness, accuracy and value.

Fig. 7. An advantage comparison of the contactless and non-invasive methods with regard to multiple perspectives.
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cardiac electrical activity. When combined with other measurements, 
even distorted ECG waveforms from contactless methods can still offer 
valuable insights. For instance, they can be used to compare with me
chanical cardiovascular signals, facilitating the estimation of movement 
rates and pulse wave progression. This indirect information can help 
derive factors such as blood pressure [91], analyse artery health and 
artery sclerosis [92–95].

Additionally, reconstructing a standard 12-lead ECG from arbitrary 
lead placements is not entirely out of reach [96], although this aspect 
has rarely been explored with contactless ECG. With appropriate tech
niques, it is possible to approximate a standard 12-lead ECG using 

arbitrarily placed contactless electrodes. Achieving this goal would 
provide a more comprehensive and valuable insight into the cardio
vascular system.

5.3. Multimodal measurements and values of conjoining

Conjoining multimodal measurements and deriving new metrics is a 
technique that has brought significant benefits to the measurement and 
analysis process. This approach is widely used in various fields to esti
mate or measure parameters that are either difficult to measure directly 
or require distractive methods. A notable example in medical 

Fig. 8. (a)–(i) Comparison of each contactless and non-invasive method with respect to different perspectives. Abbreviations: WD: working distance; IV: information 
value; BW: bandwidth; HL: harmlessness; DF: distraction-free; RL: reliability; TE: time efficiency; AW: Application Width.

Q. Yong et al.                                                                                                                                                                                                                                    Measurement 258 (2026) 119472 

11 



applications includes blood SpO2 calculation and cuffless blood pressure 
measurement [69]. SpO2 is measured by directing light beams of two 
different wavelengths, typically red and infrared, at the skin. The light 
that passes through is then captured by a photoelectric sensor, and the 
measurement of luminance is used to calculate SpO2 levels. Cuffless 
blood pressure measurement usually involves combining ECG data with 
pulse wave sensor readings, which measure the pulse transit time and 
the pulse waveform shape. Blood pressure and arterial stiffness can then 
be derived based on calculations using these parameters.

Measurements derived from such methods often rely on established 
physical models, making them relatively accurate and reliable compared 
to theoretical values. However, some derived measurements, like failure 
or disease prediction, are based on experience-driven models or statis
tical methods. In these cases, accurately representing the physical model 
may be challenging due to the complexity or uncertainty of the entire 
system. The results from such models are more often probability as
sessments for specific events within a given timeframe rather than 
precise measurements of physical parameters.

Both of these measurement techniques currently have limited value 
in medical monitoring and diagnostics, but careful consideration must 
be given to their implementation to ensure reliable results. In most 
cases, physical-model approaches are preferred over experience-based 
methods when an accurate, theoretically sound measurement is 
needed. However, developing a new measurement index or applying this 
approach to certain parameters is not a trivial task. Building a robust 
physical model can be challenging, especially when there is limited prior 
research on the topic. In such cases, auxiliary methods and approaches 
may be necessary to support the model-building process, as discussed in 
the following section.

5.4. Signal quality and measurement reliability

Obtaining signals via distraction-free and non-contact methods pre
sents its own set of challenges. Due to the nature of such acquisition, the 
signals are often highly susceptible to noise and interference. This not 
only necessitates high-quality hardware for accurate signal capture but 
also requires sophisticated software techniques to process and extract 
the desired signals. Proper implementation of these steps is crucial for 
achieving reliable results.

There are various methods to mitigate signal interference, ranging 
from traditional approaches from adaptive filtering [97,98], wavelet 
denoising [99], frequency-domain manipulation [100], and spectrum 
analysis [101], to more advanced machine learning-based techniques 
such as deep learning [102], autoencoders [103] and LSTM (Long short- 
term memory) [104]. However, each method comes with trade-offs, 
such as loss of signal fidelity, reduced diagnostic value, or increased 
processing complexity. To preserve signal integrity and minimise 
distortion, careful attention must be given to both hardware design and 
software algorithm development. Similar concerns regarding motion- 
induced artefacts and ambient vibrations have been explored in envi
ronmental monitoring domains, such as transport noise and vibration 
analysis, highlighting the need for robust hardware and advanced 
filtering strategies [105,106].

5.5. Application of artificial intelligence and its trustworthiness concerns

The rapid rise of AI has inspired new solutions to a wide range of 
challenges in this area. AI can assist in modelling core processing in 
multimodal systems and serve as a validation tool for obtained results. 
However, it is crucial to use AI responsibly, particularly in fields like 
measurement and instrumentation, where precision and regulatory 
compliance are especially critical in medical applications. To ensure that 

Fig. 9. Normalised per-perspective view of each method, showing the individual scores.
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measurements retain their clinical value and significance, strict adher
ence to guidelines, regulations, and standards is essential. Therefore, the 
integration of AI into heart monitoring and measurement requires 
caution and careful oversight.

On the other hand, AI is widely applied across all stages of cardiac 
monitoring and diagnosis, especially in research and experimental set
tings. Fig. 10 summarises the utilisation of AI across a wide range of 
cardiac monitoring and diagnosis methods, highlighting its application 
across multiple dimensions and stages. In traditional methods, such as 
contact-based ECG, key areas for AI application include myocardial 
infarction (MI) detection, arrhythmia identification, and critical events 
prediction. Multiple different algorithms are selected according to the 
specific task, ranging from simple multi-layer perceptron[107], to deep 
neural networks in modern and complex applications. Software plat
forms like Queen of Hearts [108] is often used as an assistive tool for 
medical professionals. The deep learning model in this platform can 
detect a range of cardiac occlusions and MI, even in cases without 
directly observable ECG signs [109,110]. Numerous studies have also 
focused on AI-driven detection of MI, multiple arrhythmias [111], 
hypertension-induced critical events [112], and heart failure assessment 
[113].

Unlike highly directed measurements like ECG, some models detect 
cardiovascular issues with broader inputs, including mechanical signals 
such as PCG, SCG, or BCG. AI has been used to predict heart valve dis
orders solely from PCG data, electronically equivalent to cardiac 
auscultation, allowing detection even in the absence of audible signs 
[114]. AI’s advanced signal processing capabilities make it well-suited 
for analysing rougher inputs like PCG and smartwatch-based wrist 
PPG. Wearable smartwatches have become a major focus for AI-driven 
cardiac monitoring, thanks to advancements in embedded systems and 
IoT technologies. These devices primarily use wrist PPG, where AI en
hances signal quality, detects arrhythmias, and assesses sleep and stress 
levels. Due to the computational limitations of wearable devices, some 
smartwatches rely on cloud-based AI processing, with dedicated apps 
providing trend analysis of recorded data. However, most AI imple
mentations in these devices remain proprietary and subject to frequent 
updates, making it difficult to evaluate their accuracy and reliability.

Contactless cardiovascular monitoring is a relatively advanced field, 
with most approaches focused on measuring or estimating heart rate 
using various contactless sensors. However, due to the inherent limita
tions of these methods, such as lower measurement reliability and 
reduced medical values compared to traditional medical techniques, AI 
applications in this area are still limited, particularly for evaluation and 
diagnosis. Nonetheless, AI can help address some of these challenges. 
Firstly, distraction-free and contactless signals are often noisy and prone 
to interference, making them challenging to process with traditional 
methods and filters. In the least reliable contactless heart rate mea
surement approach, camera-based detection, AI is primarily used for 
image enhancement, region of interest (ROI) detection [115], and 
improving heart rate prediction accuracy [116]. In more reliable con
tactless methods, such as radar-based and contactless ECG systems, 
specialised AI models [99,100,102,104] have been developed to process 
these signals more effectively. These models outperform conventional 
techniques in tasks such as denoising and heartbeat detection. When 
implemented with appropriate constraints, they can enhance signal 
quality without significant fidelity loss.

Moreover, AI can play an important role in uncovering relationships 
and modelling multimodal data analysis [117,118]. Deducing and pre
dicting new measurements from combined multimodal data is inher
ently complex and often lacks documented formulas or models. AI is able 
to discover hidden relationships between measurements and target 
values. By utilising advanced analytical techniques, it can establish 
these relationships and build accurate predictive models. This technique 
is also called soft sensors. Moreover, AI can assist in the validation 
process [119]. Beyond uncovering relationships between available 
measurements and hypothesised outcomes, AI can demonstrate the 
clinical significance of new measurements, particularly when direct 
comparisons with established ground truths are not feasible. In research, 
novel measurement indexes may be introduced to estimate specific 
cardiological factors, but traditional methods may lack reference mea
sures for validation. In such cases, AI can help establish connections 
between these new indexes and established clinical markers, reinforcing 
their reliability and significance.

However, while AI offers advantages across various domains, 

Fig. 10. The summarisation of AI application in cardiac monitoring and diagnosis.
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concerns about responsibility and trustworthiness arise simultaneously. 
One major issue is AI’s inherent black-box nature: its decision-making 
processes are often opaque and difficult to interpret. Unlike traditional 
diagnostic methods grounded in well-established physical principles, AI- 
generated results require careful scrutiny, particularly in medical ap
plications. There have been cases where AI has produced questionable or 
theoretically implausible results. For example, some models claim to 
derive ECG waveforms from cardiovascular mechanical waves detected 
by radar [63]. This approach relies on a generative model, meaning the 
ECG waveform is synthesised rather than directly linked to the heart’s 
actual electrical activity. As a result, such outputs should be treated with 
caution when considered for cardiac monitoring or diagnosis. Another 
critical concern is data security and privacy. Unlike common user data, 
medical data is considered highly sensitive and must be stored under 
stringent safety and security standards, as regulated by law. Many cloud- 
based services and client applications lack proper certification for 
handling sensitive data, making them vulnerable to breaches. From an 
ethical and patient confidentiality standpoint, cloud-based and AI- 
driven solutions are often viewed with scepticism. Patients may be 
reluctant to accept them due to untransparent workflows, uncontrolla
ble data sharing, and cybersecurity risks [120].

Addressing these problems is far from straightforward, as they 
require fundamental changes across the entire pipeline and can be 
resource-intensive. Nevertheless, several strategies may help mitigate 
these challenges. For AI opacity, reliability, and interpretability, 
responsible and well-scoped deployment is crucial to improving trans
parency and trustworthiness. This includes incorporating explainable 
and rigorously validated AI methods, limiting the scope of AI applica
tions, and refining feature-extraction algorithms rather than feeding 
under-processed data directly into models. Interpretability strategies 
should also be developed in parallel with AI methods to ensure seamless 
integration into existing diagnostic and analytical frameworks. For 
medical data security and privacy, stronger legislation, layered security 
mechanisms, and secure data frameworks are essential. Practical mea
sures include implementing end-to-end encryption, restricting the use of 
proprietary or unverified software in critical systems, incorporating 
secure data pipelines, and strengthening end-device protection through 
better privacy hygiene practices [121]. While absolute cybersecurity 
cannot be achieved, the overall level of protection and effectiveness can 
be substantially improved by combining regulatory enforcement with 
advanced security methods, which is an especially crucial consideration 
in medical applications.

5.6. Challenges in regulatory and standardisation

In contrast to many other fields, medical applications are highly 
regulated due to their direct interaction with humans, associated safety, 
privacy, and ethical concerns, and the potentially catastrophic conse
quences of system failures. Before deployment, a medical device must 
obtain multiple certifications and comply with established standards (e. 
g., the International Electrotechnical Commission (IEC) 60,601 series for 
ECG devices), which often vary across countries and organisations.

For newer contactless and non-invasive methods, however, stand
ardisation remains limited. These approaches are mostly experimental, 
with working principles that differ widely from one another and from 
traditional methods, leaving few existing standards that can be directly 
applied. For instance, there are no recognised standards for assessing the 
accuracy and reliability of radar-based cardiovascular monitoring sys
tems. Existing regulations typically apply only to the radar hardware 
itself (e.g., transmission frequency and power limitations set by the 
Federal Communication Commission (FCC)) or to general hardware 
requirements (e.g., Restriction of Hazardous Substance directive (RoHS) 
compliance). This lack of standardisation creates significant challenges 
for certification and clinical deployment. Combined with the fact that 
most devices are still at the research stage, they are rarely applied 
directly to disease diagnosis and instead used mainly as assistive tools in 

clinical trials.
For medical AI components, regulatory frameworks are somewhat 

more developed (e.g., International Organization for Standardization 
(ISO) 13485, ISO 14971, IEC 62304), but remain fragmented compared 
with AI governance in other established fields [122]. Certification is 
particularly difficult because AI is often considered opaque, whereas 
medical technologies typically require transparent mechanisms and 
predictable outcomes. Standards also vary across countries and regions, 
further complicating the approval process. As a result, certification is 
often sparse and unsystematic. Only products backed by significant re
sources and extensive testing, such as smartwatches and certain AI- 
based ECG diagnostic systems [108], achieve wider certification. Even 
then, they may face obstacles in jurisdictions where standards are 
unrecognised or incompatible. At present, medical AI certification is still 
largely adapted from general software standards, with validation 
focused mainly on performance rather than dedicated regulatory 
frameworks.

5.7. Validation of monitoring techniques

Existing measurable signs are those that can be assessed using 
established techniques, such as blood pressure and cardiac stroke vol
ume. These signs are relatively straightforward to verify and validate, as 
they can be compared directly to known ground truths. This allows for a 
clear evaluation of accuracy and error rates, though comprehensive 
statistical steps have to be followed for the reliability of results [123].

In contrast, contactless signs and measurements may lack direct 
ground-truth counterparts. These signs, derived from multimodal data 
processing, offer new ways to indicate cardiovascular parameters. In 
such cases, the validation process focuses on demonstrating the value 
and significance of these signs in evaluating cardiovascular performance 
or predicting cardiovascular diseases. AI can be employed to establish 
relationships between the novel signs and patient conditions, thereby 
confirming their relevance and accuracy.

5.8. Comparative discussion

Cardiovascular monitoring relies on a wide range of methods, each 
built on different signs and principles. Classical techniques such as PCG, 
PPG, ECG, and blood pressure measurement are the most commonly 
used in clinical practice. When greater diagnostic detail is required, 
imaging methods such as ultrasound, CT, or MRI may be employed, 
though at the expense of higher cost and longer scan times. These 
methods are well established, supported by comprehensive diagnostic 
standards, and valued for their accuracy and reliability. However, they 
are often invasive, time-consuming, and technically demanding, 
requiring trained professionals to operate, which limits their use mainly 
to clinical environments.

In contrast, newer methods aim to improve user experience, ease of 
use, and broader accessibility by employing non-invasive or contactless 
sensing. Examples include radar sensors that detect chest wall motion 
induced by cardiac activity, and contactless ECG and MCG sensors that 
use capacitive sensing to capture cardiac EMFs without skin contact. 
Wearable devices, such as smartwatches, offer additional convenience 
for monitoring parameters like heart rate and SpO2. These approaches 
reduce user burden and interference with daily life but face trade-offs, 
including reduced signal quality, limited diagnostic value, and higher 
susceptibility to noise and artefacts. Furthermore, wearables cannot 
always be used in specific environments or scenarios.

To address these challenges, multimodal integration offers a prom
ising path forward. While individual non-invasive modalities may pro
vide limited information on their own, combining them can enable more 
comprehensive analysis, improve artefact detection and cancellation, 
and reveal features not accessible through a single modality. When 
further supported by advanced algorithms and carefully applied AI 
methods, these systems can compensate for signal limitations, improve 
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diagnostic value, and increase reliability.

6. Conclusions

This article reviewed, compared, and analysed a wide range of car
diovascular monitoring techniques, with a particular focus on non- 
invasive and contactless methods. Emerging approaches, such as 
radar-based sensing of precordial pulsations and vibrations, capacitive 
ECG, camera-based PPG, as well as comparable non-invasive methods 
including SCG, BCG, and wearable smartwatches, were examined in 
terms of their working principles, advantages, and disadvantages across 
multiple performance dimensions.

While contactless monitoring offers clear benefits, including 
distraction-free operation, flexibility, and user-friendliness, it still faces 
inherent challenges in signal quality, reliability, and overall perfor
mance. Potential solutions include advanced hardware (e.g., wideband 
analog CW Doppler radar, contactless ECG), effective signal processing, 
responsible AI, and multimodal data fusion, which together can mitigate 
signal degradation and enrich diagnostic information.

With these improvements, contactless cardiovascular monitoring has 
the potential to complement and, in some cases, surpass traditional 
methods. By leveraging their strengths while addressing current limi
tations, these techniques could significantly enhance accessibility and 
usability, offering transformative opportunities for cardiovascular 
healthcare across diverse applications.
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