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Cardiovascular diseases are the leading cause of global fatalities, necessitating effective diagnostic solutions.
Traditional methods, while valuable, often require invasive procedures or require subjects to remain stationary,
limiting their real-time monitoring capability in dynamic environments. This article reviews the emerging field of
contactless and distraction-free cardiovascular monitoring, which offers distraction-free, flexible, and user-
friendly alternatives for enhanced accessibility. We examine various techniques, including radar-based
methods, optical measurements, ballistocardiography, contactless electrocardiogram (ECG), and wearable de-
vices, comparing their working principles, advantages, and limitations against traditional diagnosis methods.
The novelty of this review lies in its comprehensive evaluation of these methods across eight key dimensions,
including application breadth, time efficiency, reliability, distraction-free operation, safety, bandwidth, infor-
mation value, and working distance. Another new perspective involves how advanced hardware, digital filters,
and artificial intelligence (AI)-driven signal processing methods address challenges associated with relatively
poor signal quality. Additionally, this article discusses these techniques’ key values on healthcare, challenges,
and emerging opportunities.

1. Introduction

Cardiovascular disease accounts for a significant portion of global
mortality, responsible for 32 % of deaths worldwide according to the
World Health Organization (WHO) [1]. As a result, cardiovascular and
vital monitoring has been a highly focused point of interest for several
decades. Cardiovascular assessment comes with a wide range of pa-
rameters, which can be measured with different techniques, primarily
targeting mechanical signs, circulation dynamics, and electrical activ-
ities of the heart. For example, cardiac structural abnormalities can be
initially screened through phonocardiogram (PCG) or auscultation [2]
and further confirmed via diagnostic imaging techniques like echocar-
diogram (ultrasound) or chest X-rays. Cardiac performance dynamics
are typically assessed via blood pressure measurement, ultrasound, or
impedance cardiography (ICG). Meanwhile, the heart’s electrical ac-
tivities are most accurately evaluated using an electrocardiogram (ECG)
[3].

Proper monitoring and assessment of these parameters are crucial for
the prevention and timely intervention of cardiac diseases. Cardiovas-
cular abnormalities are often reflected in these vital signs, making
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continuous and accurate measurements essential not only for assessing
cardiovascular health but also for predicting certain cardiovascular
diseases and events. However, the above traditional monitoring
methods are primarily employed in clinical settings, requiring trained
medical personnel and specialised equipment. These methods also
impose several limitations on patients, such as the need for sensors and
wires that can cause discomfort [4], even leading to allergic reactions
over long periods [5], and the requirement for patients to remain in
specific positions during monitoring [6]. These constraints limit the use
of traditional monitoring techniques in dynamic or real-life environ-
ments, particularly during operative procedures such as working,
driving, or gaming. Furthermore, some traditional medical methods of
cardiovascular monitoring are highly invasive and can even pose risks to
the patient. For instance, radiological imaging involves exposure to
intense electromagnetic waves or ionising radiation, which can be
harmful, especially with repeated use [7]. Invasive techniques, such as
blood pressure monitoring through catheterisation or cardiovascular
catheterisation itself, often require surgical procedures or the insertion
of catheters into the body, increasing the potential for complications [8].
As a result, there is a growing demand for novel approaches to reduce
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invasiveness, reduce distractions and enhance the user experience,
enabling more accessible and patient-friendly cardiovascular moni-
toring solutions. It should be noted that the intention is not to replace
traditional techniques used in clinical settings, where they hold signif-
icant diagnostic value, but rather to extend heart monitoring to a wider
range of environments.

The advancement of mobile devices and wireless technologies has
led to significant breakthroughs in emerging innovative measurement
techniques. Current emerging distraction-free heart monitoring methods
can be broadly categorised into two areas: wearable smart devices [9]
and contactless monitoring. Wearable devices currently dominate the
field and are widely used, while contactless approaches are still in active
research and development. These technologies offer several advantages
over traditional medical devices, including greater accessibility,
enhanced user experience, reduced distractions, and the ability to
operate without the need for medical professionals. Despite their con-
venience, these technologies are not typically used for diagnostic pur-
poses or approved for professional medical diagnoses. This is largely due
to their susceptibility to interference and relatively lower reliability and
accuracy. Depending on the specific implementation, these methods can
be affected by various artefacts, such as environmental fluctuations,
vibrations, and user movement, limiting their effectiveness in clinical
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settings.

This review provides the first comprehensive and systematic syn-
thesis of emerging contactless and distraction-free cardiovascular
monitoring techniques, a field that has so far remained fragmented and
under-reviewed. While traditional cardiovascular monitoring methods
are well established and extensively studied, newer approaches are
typically only discussed in comparison to conventional techniques,
without a broader perspective on their principles, advantages, and
limitations. By analysing the working mechanisms of these methods,
positioning them in relation to traditional approaches, and evaluating
their attributes across multiple key dimensions, this paper offers a ho-
listic view of their strengths and weaknesses. Furthermore, it highlights
the challenges, opportunities, and future directions of contactless car-
diovascular monitoring, providing valuable insights for researchers
seeking an overview of the field, comparative analysis, or a foundation
for advancing further research in this emerging area.

2. Methodology
A cardiovascular measurement and monitoring system typically

combines a sensing device with an algorithmic protocol that acquires
one or more inputs from specific sensors, processes and analyses the

Exclusions: \

Full text unavailable in English |
Outdated Information for Novel methods

In-formal contents (letters, certain reports, etc.)

Exclusions:
Unrelated Topics
Outdated Information that being replaced
Poor outcome or quality

Exclusions:
Full-text Unavailable
Questionable Quality

Questionable Background (internet results)

Fig. 1. Flowchart of the article and content selection process in the review.
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data, and generates measurement outcomes related to cardiovascular
conditions and vital signs. This study presents a systematic literature
review on non-invasive cardiovascular and vital signs monitoring tech-
niques, conducted in accordance with Preferred Reporting Items for
Systematic reviews and Meta-Analyses (PRISMA) 2020 guidelines to
ensure transparency and reproducibility. The review comprised three
main steps. First, the scope was defined to focus primarily on contactless
and non-invasive methods, while also considering relevant contact-
based techniques for context. Second, the identified methods were
reviewed, with their advantages, limitations, and performance
compared across multiple dimensions. Finally, the review highlighted
key challenges, emerging opportunities, and potential directions for
future improvements.

Fig. 1 provides a flowchart overview of how the articles and contents
are being selected. Most of the included studies were indexed in major
databases, such as Scopus and Web of Science (WoS), using a set of
relevant keywords (e.g., contactless, cardiovascular monitoring, non-
invasive, radar, ECG, wearable). Additional searches were conducted
in Google Scholar and through general web searches to broaden
coverage. The initial search retrieved more than 1300 results from da-
tabases, and more than 150 results from additional methods, which were
then deduplicated and filtered according to predefined conditions to
exclude any unsuitable results. Recent publications were prioritised to
capture state-of-the-art and emerging technologies, while non-English
articles and sources from unverifiable outlets were excluded. A total of
500 articles were being processed in the retrieval process for full text.
With further screening being applied to the title, abstract, full-text, and
removing articles with unavailable full-texts, a total of 272 articles were
retained for detailed assessment of quality, relevance, and compatibility.
This detailed assessment results in a total of 146 articles being reserved
as candidates. Ultimately, 123 articles were included and reviewed in
this study.

Table 1 provides an overview of current cardiac measurement and
diagnostic approaches, including both traditional methods and
emerging innovations such as wearable devices and contactless
methods. It compares several key aspects, including operational con-
straints (such as working distance and required conditions), invasive-
ness (contact requirements, potential risks, and time consumption),
underlying mechanisms (detection signs and working principles), and
key performance metrics (susceptibility to interference, accuracy, and
diagnostic value). The table lists the constraints (working distance and
special conditions), invasiveness (contact requirements, harm, and time
consumption), mechanisms (signs of detection and working principle),
as well as key performance (susceptibility to interference, accuracy and
diagnosis value). The table is based on the authors’ own analysis and
synthesis of the reviewed literature and existing technologies, with
references included in the corresponding cells.

The article is organised as follows: Section 3 provides a brief over-
view of traditional cardiovascular monitoring methods, while Section 4
critically reviews emerging contactless and distraction-free techniques.
Section 5 discusses key challenges, opportunities, and potential future
directions, and Section 6 presents the conclusions.

3. Classic techniques

The most commonly used methods for medical screening and diag-
nosis of heart conditions include PCG, PPG, ECG, and blood pressure
measurements. These techniques offer valuable diagnostic information
while maintaining a relatively straightforward and accessible approach,
making them highly effective for routine use in clinical settings. Classic
methods are reviewed in this article because they serve as widely
accepted ground-truth approaches in medical areas. Furthermore, the
principles behind these techniques form the foundation for many newer
approaches, which often build on and extend these established
approaches.
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3.1. Heart auscultation and phonocardiogram

Heart auscultation is one of the oldest and most widely used methods
for cardiac diagnosis [11], where heart sounds are auscultated in order
to assess the heart’s mechanical condition. Through this approach, cli-
nicians can identify cardiac murmurs, abnormal heart sounds, and
certain arrhythmias. PCG operates on a similarly straightforward prin-
ciple, capturing cardiac acoustic signals using a microphone or acoustic
sensor. These signals are then visualised as waveforms or spectrograms
for analysis. While PCG is closely related to traditional heart ausculta-
tion, it offers a more precise and detailed evaluation of the heart’s
acoustics.

3.2. Photoplethysmogram

PPG is a non-invasive method for monitoring heart rate and blood
oximetry from the skin surface [12]. It is widely used in both consumer
smart devices and professional medical equipment. As shown in Fig. 2, it
operates through absorbance-based measurements to generate a pulse
wave. Advanced PPG sensors typically use two light sources, most
commonly red and infrared (IR) light. These light sources flash back-to-
back at the sampling frequency while a photodiode simultaneously de-
tects the residual light. The photodiode’s output is inversely propor-
tional to the absorbance and pulse wave intensity. This signal is then
conditioned, amplified, and synchronised with the light pulses. During
each sampling period, two intensity values —one from red light and one
from IR —are captured, allowing the construction of an absorbance
graph from the data stream. The PPG controller processes these two
traces, utilising spare samples for ambient light cancellation, filtering,
and signal processing. From the processed PPG data, algorithms can then
calculate key metrics such as SpO2 (blood oxygen saturation) and heart
rate.

3.3. Electrocardiogram

Among all cardiac measurement and diagnostic methods, ECG is one
of the most critical tools for assessing heart functions, and it is widely
used for clinical interpretation [25]. It measures the heart’s electrical
signals as projected onto the body’s surface, known as the body-surface
EMF. Fig. 3 illustrates the basic working principle of an ECG lead.
Contact electrodes placed on the body surface detect these electrical
signals and transmit them to an instrumentation amplifier with high
input impedance. The amplifier captures the differential voltage, am-
plifies it, and passes the signal through analogue filtering circuits before
it is sampled and acquired as digital data. Once the ECG signal is digi-
tised, it typically undergoes further digital signal processing for addi-
tional filtering and to calculate specific cardiac parameters.

ECG signals are inherently weak and highly susceptible to interfer-
ence [26,27], such as mains power line noise or static discharges. To
prevent the instrumentation amplifier from being overwhelmed by these
interferences and drifts, a right-leg drive circuit is often used to inject a
reversed common-mode offset voltage, maintaining control over the
input swings of the amplifier [28]. Depending on the design, the mains
power line notch filter can be implemented either in the analogue or
digital domain. In multi-lead professional ECG systems, multiple
instrumentation amplifiers and acquisition channels are employed.
These systems use the standard 12-lead electrode configuration and
capture waveforms concurrently. For a typical 12-lead ECG setup,
around 8 to 9 acquisition channels are used, where leads like Lead I and
Lead II are measured directly, and other leads such as Lead III to Lead
aVF are derived using formulas. The precordial leads (V1-V6) can be
measured either by calculating the voltage difference between the pre-
cordial electrodes and a buffered virtual ground point or by deriving the
difference between the precordial and limb lead electrodes.

ECG offers a comprehensive diagnostic framework, allowing clini-
cians to identify a wide range of cardiac conditions by analysing the



Table 1
A summary of current cardiac measurement and diagnosis methods.
Technique WorkingDistance Special Condition Harm Time Signs of Detection Working Principle Interference  Accuracy Diagnosis-
Consumption Value
Mechanical Heart Auscultation, Skin Contact - - Short Cardiac Phonography Acoustical pickup Med-High Low Low
Methods Phonocardiogram [10,11]
(PCG)
Photoplethysmogram Skin Contact - — Short Pulse Wave Optical Absorption High Low-Med Very Low
(PPG) [12] [13]
Common Blood Skin Contact, - - Short Blood Pressure Waves Pressurization of Med-High Medium Low
Pressure Mechanical- SensorObtaining
Pressure Reaction Plot
Ambulatory blood Contact, Invasive- Injection of Sensor Invasive Long Artery Blood Pressure Pressure Sensor Low High Medium
pressure (ABP) Sensor Monitoring
Seismocardiography Contact - - Short Cardiac Vibrography Accelerometer Medium Medium Low
(SCG) [14,15]
Ballistocardiography No Skin Contact, Sitting Still / Lying - Short BallistoCardioGraphyVibrations Pressure Sensor, Very High Low-Med  Low
(BCG) Requires caused by aorta Micromovement
Mechanical Pickup,
Pressure Amplification
[16,17]
Radar-based(Cardiac 5cm ~ 150 cm - - Long Body Surface-Cardiac Mechanical Doppler Radar, High Low-Med  Low
Baseband) Movements Baseband estimation
(Long Spectrum)
[18]
Radar-based(Cardiac 5cm ~ 150 cm - - Short Body Surface-Cardiac Mechanical Doppler Radar, Medium Med- Med
Wideband) Movements, Vibrography, Demodulation, High
Phonogram Signal Extraction and
Processing [19]
Electrical Electrocardiogram Skin Contact, - - Short Cardiac Electrical Activity Body Surface Low- Med- Med-High
Methods (ECG) Electrical Electromotive force Medium High
(EMF)Caused by
Cardiac Muscle
Activities
Contactless ECG <5cm - - Short Capacitively-Coupled Body-Surface ~ High Impedance Very High Low-Med  Med
Electrical Activity Capacitive-Coupled
Sensor,
Amplification
Impedance Skin Contact, - - Short Cardiac Volumetric Change HF Current Injection Medium Medium Low
cardiography (ICG) Electrical Impedance
Estimation [20,21]
MagnetoCardioGram <20 cm Usually - Medium- Localized EMFs Magnetic Field Med-High Med- High
(MCG) ElectroMagnetically Long generated by Cardiac High [22,23]
Shielded EMFs [22]
Imaging Echocardiogram Skin Contact, - Occupational Short- Cardiac Echography Imaging Ultrasonic Med-High Med- High
Methods (Ultrasound) Acoustic-Coupling harm to operator. Medium Echography High
[24]
Magnetic resonance <0.5m Strong magnetic field Pacemakers; Metal ~ Long Cardiac MRI Imaging Nucleo Magnetic- Low High High
imaging (MRI) Objects; Resonance Imaging
Radiofrequency
Burns
CT <0.5m X-Ray, Highly Ionising Radiation ~ Short Cardiac Radiological Imaging Tomography,3D X- Low High High
specialised Ray Imaging
Professional Device Reconstruction
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heart’s electrical activity [25]. It is particularly useful for diagnosing
cardiac arrhythmias, heart attacks, conduction system abnormalities,
and more. Each condition is associated with specific ECG waveform
signatures and measurement ranges. For example, ST segment de-
viations are indicative of heart attacks, while abnormal PR intervals or
QRS complexes suggest conduction system disorders or arrhythmias.
Advances in computing technology have enabled automated ECG mea-
surements and analysis, allowing certain abnormalities to be flagged by
software. However, the final diagnosis remains the responsibility of a
cardiologist, as computer-aided systems often fall short in complex cases
where human expertise provides superior diagnostic accuracy. To better
assist human-interpretation of the ECG, certain interaction models have
been developed to reduce cognitive load and improve the overall ac-
curacies of the ECG interpreters [29].

Although ECG is considered a gold standard in cardiac diagnosis, it is
not the sole method for evaluating heart functions. This is because ECG
only measures the electrical activity of the heart, limiting its scope. The
cardiovascular and circulatory systems are complex, comprising elec-
trical pacemaker systems, conduction pathways, muscular function, and
mechanical components. Abnormalities in the heart’s mechanical sys-
tem, structural issues, or problems in the surrounding blood vessels can
be difficult, if not impossible, to detect through ECG alone. This is where
cardiac imaging techniques come into play, offering a more compre-
hensive view of the heart’s structure and function.

3.4. Imaging methods
These methods are usually considered diagnosis approaches, not for

monitoring. The most widely used cardiac imaging technique is ultra-
sound, commonly referred to as an echocardiogram. This method uses

an array of transmitted ultrasound waves and captures their reflections
to create detailed images of the heart [30]. Advanced ultrasound tech-
niques, such as Doppler imaging, are often employed to provide addi-
tional insights, such as blood flow velocity. An echocardiogram
produces real-time video of specific areas of the heart, allowing visual-
isation and diagnosis of mechanical and structural abnormalities, such
as heart failure, atrial septal defects (ASD), ventricular septal defects
(VSD), and valve disorders. It can also estimate cardiac performance
metrics, such as stroke volume. Like ECG, echocardiography is mini-
mally invasive, requiring only access to the chest area. However, it is
more labour-intensive because obtaining clear images requires precise
positioning of the ultrasound probe at specific angles between the ribs.
The probe must be frequently adjusted, and the operator must simul-
taneously manipulate the console to achieve a comprehensive view of
the heart [31]. This process often takes longer than an ECG, causes more
patient discomfort due to required body positioning and constant probe
movement, and is impractical for continuous monitoring due to the
complexity of the setup. Moreover, over the years, a high proportion of
sonographers suffered from repetitive shoulder injuries [24] and have
been out of work for a long time or left the profession. One of the key
limitations of echocardiography is its relatively low image resolution
[32]. Cardiac structures can be difficult to discern, making it unsuitable
for diagnosing detailed conditions such as coronary artery disease.
Additionally, operating an echocardiogram is a highly specialised skill,
requiring extensive training for accurate diagnosis. The quality of the
imaging and the precision of the diagnosis largely depend on the
expertise of the sonographers.

The disadvantages of the above-mentioned echocardiogram are
compensated by advanced and aggressive imaging methods such as CT
(Computed Tomography) and MRI (Magnetic Resonance Imaging).
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Cardiac X-rays and CT scans use continuous X-ray imaging to create
detailed 3D views of heart structure, providing far superior image
quality. These methods allow for the visualisation of not only cardiac
structures but also critical risk factors like blood vessel blockages, pla-
ques, and other abnormalities. Imaging can be further enhanced with
the use of contrast agents to perform angiograms, offering a detailed
view of coronary blood vessels and detecting hidden issues such as
micro-blockages and myocardial bridges.

However, the use of X-ray and CT imaging comes with significant
costs. X-rays used in these procedures involve ionising radiation, and
cardiac CT scans typically require comparatively higher radiation doses
in order to obtain higher image quality of the cardiac system [33].
Additionally, the injection of contrast agents is an invasive procedure,
which can pose risks in certain cases. As a result, cardiac X-rays and CT
scans are not only labour-intensive and require specialised expertise but
also carry potential harm to the patient. Due to these risks, cardiac CT
imaging is generally reserved for situations where the potential benefits
clearly outweigh the harms, such as in cases of suspected heart attacks or
other serious cardiac conditions.

Cardiac MR Imaging (CMR) has been developed to address some of
the issues associated with cardiac X-ray and CT imaging, offering dy-
namic imaging of the heart through MRI technology. CMR provides a
more comprehensive view of cardiac tissues by utilising different MRI
sequences and imaging configurations, allowing not only the visual-
isation of the heart’s mechanical structures but also the detection of
issues such as myocardial scarring, perfusion defects, and other tissue
abnormalities. However, CMR faces its own set of challenges, particu-
larly due to the complexity of MRI and the heart’s constant motion. The
process is highly time-consuming, as it requires MRI scans with high
temporal resolution that must be synchronised with ECG signals to
capture images at precise moments in the cardiac cycle. This signifi-
cantly increases the time required for the procedure, making it difficult
to perform on certain patients. Additionally, CMR is still an evolving
field with fewer clinical applications compared to more traditional
diagnostic methods. The need for specialised equipment and setups
makes CMR both labour-intensive and costly, limiting its availability in
many hospitals. There are also inherent risks and limitations associated
with MRI technology. The strong magnetic fields used during the pro-
cedure pose a danger to patients with metal implants, such as pace-
makers, making them unsuitable for MRI. Furthermore, the
radiofrequency (RF) energy emitted during MRI can, in rare cases, cause
tissue burns, adding another layer of risk to the procedure.

4. Distraction-Free and contactless techniques

The trade-offs between functionality, safety, and invasiveness in
traditional diagnostic methods have driven the development of inno-
vative alternatives. These new methods aim to capture partial mea-
surements that are typically obtained through more invasive or
distractive techniques, but in a more distraction free manner. They
primarily focus on external mechanical and electrical signals of the
heart. Recent advancements have led to the development of several
innovative measurement techniques, such as radar-cardiogram [34],
ballistocardiogram [35], seismocardiogram (SCG) [15], and contactless
ECG. These methods seek to provide valuable diagnostic information
while minimising distractions. The working principles and critical
evaluation of these techniques are discussed in this section.

4.1. Camera-based or optical measurements

In video-based heartbeat detection, two primary algorithms are
commonly used: colour-based detection and micro-movement amplifi-
cation. The colour-based approach is the most widely adopted, tracking
subtle variations from a specific hotspot area of the video to obtain the
pulse waveform and measure heart rate [36-38]. This method operates
by detecting subtle skin colour changes due to pulse wave-induced
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expansions in capillary blood vessels. This approach is relatively easy to
implement but is highly sensitive to environment and video quality.
Light fluctuations, subject movements, camera noises, and video
compression can severely affect results. Therefore, its real-world appli-
cations are limited, and this approach is primarily used in controlled
experiment venues.

Micro-movement amplification focuses on amplifying microscopic
skin movements generated by pulses in the arteries. These subtle
movements are algorithmically exaggerated to enhance visibility [39].
While micromovement amplification is better suited for detecting vi-
brations and is somewhat more resilient to lighting changes and colour
variations, it demands higher video quality, stable focus, and precise
device calibration to achieve accuracy. It is also sensitive to motion
artefacts and vibrational noise, which limits its use primarily to specific
applications, and respiration monitoring [40], rather than widespread
deployment of cardiovascular signs monitoring.

4.2. Radar-based approaches

In comparison to camera-based or optical measurements, radar-
based approaches are relatively more reliable and accurate due to
their reduced susceptibility to environmental interference. Radar sys-
tems utilise various setups and algorithms, leading to considerable
variability in accuracy and effective working distance.

4.2.1. Continuous wave (CW) Doppler radar

Most current radar-based systems employ low-power continuous
wave Doppler radar, where the radar front-end emits a constant fre-
quency radio-frequency (RF) wave. As illustrated in Fig. 4, this wave
reflects off the chest wall and is down-converted to Doppler shift base-
band signals that correspond to chest wall motion. Many studies
attempt to estimate heart rate directly without demodulating these
signals to achieve seemingly robust results with simple hardware by
using methods such as long-window spectrum [41], autocorrelation
[42] or time-domain peak-detection [43]. However, these approaches
often result in information loss and reduced accuracy, even function
failure in certain cases [42]. Their main limitations result from a general
lack of beam focus, the presence of null points of un-demodulated,
single-channel CW Doppler radar signals [44], and susceptibility to
clutter and artefacts. These methods also focus on the fundamental
frequency of precordial movements, which can be absent in certain in-
dividuals, leading to non-functional results in some experiments. Addi-
tionally, methods such as long-window spectrum analysis and
autocorrelation can perform less effectively in cases of fluctuating heart
rates (e.g., arrhythmias), where the spectral peak distribution becomes
wider and is more easily masked by noise and artefacts, particularly in
single-channel, un-demodulated CW radar setups.

To address the drawback of direct-detection methods, several
demodulation algorithms including Arc-tangent and DACM (Differential
and Cross-Multiplication) algorithms, as well as radar front-end archi-
tectures (e.g., heterodyne digital quadrature demodulation [45],
frequency-tracking radars [46]) were introduced to enhance signal
quality and robustness against suboptimal environments. The Arc-
tangent demodulation algorithm, recognised as the most popular
demodulation technique among CW quadrature radars, is widely utilised
because of its generic stability [47] and low computational overhead.
DACM focuses on further reducing distortion in the demodulation pro-
cess and is primarily used for high-fidelity vibrational detection [48].
These algorithms eliminate null points and enable operation over a
wider range of distances. However, some implementations still face
significant challenges. Demodulation of such radar signals requires high
precision in data acquisition and sampling rates, as well as an effective
heartbeat detection algorithm. Many existing systems struggle with
capturing per-beat heart rhythms due to the use of long-running detec-
tion windows for higher signal-to-noise ratio, leading to a loss of tem-
poral information. Additionally, many CW implementations suffer from
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Fig. 4. A working principle diagram of quadrature Doppler-radar based cardiac monitoring systems.

limited effective signal bandwidth due to the sampling rates. This lim-
itation can result in signal degradation due to aliasing and makes them
unsuitable for retrieving vibrograph or phonocardiograph information.
It is worth noting that frequency-tracking [46] or phase-tracking active
radars [49] have been explored as alternative solutions to address the
null-point issues in single-channel CW radars. These methods utilise
active oscillators and Phase-Locked Loop with active control to retrieve
motion information, operating with a single channel architecture and no
null points. They have demonstrated the capability to detect respiration
and heart rate in experiments. However, these methods involve active
control and feedback systems along with active radars, making it more
complicated than most quadrature demodulation implementations. The
involvement of active control can reduce their stability compared to
static and passive approaches under certain conditions.

4.2.2. Frequency modulated continuous wave radars

Some research has utilised Frequency Modulated Continuous Wave
(FWCW) radars, which use frequency-modulated RF waves and analyse
intermediate frequency (IF) signals to obtain ranging information.
FMCW radars often use Fast Fourier Transform (FFT) and phase
unwrapping for frequency measurements. They offer the advantage of
reduced calibration requirements but come with several challenges.

FMCW radars typically measure ranging information only during a
single sweep cycle. The sweep repetition frequency (SRF) and ranging
accuracy are often a trade-off. To measure cardiac vibrations accurately,
FMCW radars generally require a low SRF of several hundred Hz,
sometimes even down to 20 Hz [50], limited by the hardware, in order
to preserve ranging accuracy. This restriction greatly limits the effective
bandwidth and causes aliasing issues, especially for high-frequency vi-
brations. The heart vibration spectrum can reach several hundred Hz or
even exceed 1 kHz in cases of cardiac murmurs [10,51].

A low effective sampling rate combined with noise and even aliasing
usually causes significant deterioration of signal quality in the time
domain and the frequency-domain effective bandwidth. Thus heart-rate
detection methods for FMCW radars often focus on cardiac baseband
signals [52], which sacrifice accuracy and temporal information, even
with advanced detection methods [53]. While hardware improvements
and complex detection algorithms can somewhat enhance heart-rate
measurement accuracy [50], FMCW radar systems still rely on
windowed detection methods and cannot detect individual heartbeats.

Moreover, FMCW radars usually operate at very high frequencies
(around 76 GHz to 81 GHz) to achieve a legally permissible large
bandwidth. These high frequencies can limit penetration through air
and clothing, reducing both accuracy and effective range.

4.2.3. Highlights and limitations of Radar-based approaches

To achieve the desired performance and overcome the drawbacks
outlined above, a combination of carefully designed hardware with
dedicated software algorithms is necessary. Yong et al. (2025) devel-
oped a radar-based contactless vital signs monitoring system using a K-

Band tunable radar [19]. This system, equipped with a high-
performance data acquisition system and advanced signal processing
algorithms, demonstrated reliable and accurate performance across a
wide range of experiments. It effectively measured respiration and heart
rates, while providing vibrograph and phonocardiogram information.
However, due to the nature of radar-based systems, which utilise array
antennas for beamforming, the working distance was limited to 2.5 m,
and the maximum deflection angle was 45 degrees.

Despite recent advancements, radar-based approaches are still not
yet a fully complete solution for distraction-free and contactless cardiac
monitoring. These systems detect minor movements and vibrations from
a distance, possessing the following limitations. Firstly, these techniques
primarily capture precordial mechanical signs. Without complementary
measurement techniques, the scope of information they provide remains
relatively limited. While precordial mechanical signs contain certain
valuable features, a lot of other important cardiovascular indicators can
only be obtained with an electrocardiogram. Secondly, similar to other
distraction-free or contactless methods, radar-based systems are
vulnerable to both human and environmental factors, where compli-
cated algorithms are usually required to mitigate the effects of motion
artefacts [18]. The accuracy of measurements depends on maintaining
proper positioning [54] and minimising movement to ensure the radar
beam is directed at the chest area. Significant shifts or changes in po-
sition can disrupt the radar beam’s focus, resulting in inaccurate data.
Thirdly, there is currently no established set of standards for radar-based
cardiac measurements, including those for heart rate and other param-
eters, which limits their broader adoption in medical and healthcare
settings. To fully realise and further enhance the value of these systems,
coordination with other sensor technologies and algorithms is essential.

4.3. Contactless ECG-based approaches

Contactless ECG monitoring is not an entirely new concept and has
been explored over the past two decades as an innovative method for
reducing the distractions and constraints of traditional ECG monitoring.
While it has been proven that recognisable ECG waveforms can be ob-
tained through contactless methods, this approach has not yet become
practical for professional medical use or general health monitoring. This
is primarily due to significant challenges related to signal uncertainty
and waveform integrity.

Popular implementations of contactless ECG monitoring often
involve embedded electrodes in seat backs, bed mats, or even toilet seats
[55], where the body’s surface ECG electromotive force (EMF) is picked
up capacitively, either by electrodes made with special materials [56],
or with common PCBs but with a specifically designed amplifier [57].
However, these methods introduce considerable uncertainty, as the
captured waveforms are prone to severe distortion caused by body
movements, vibrations, and environmental factors. Additionally, the
varying distance between the body and the electrodes acts as a high-pass
capacitive filter, which continually shifts the waveform, further
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complicating accurate signal acquisition.

Waveform integrity is a critical issue that limits the adoption of
contactless ECG as a reliable monitoring and diagnostic tool. Traditional
ECG systems, particularly the 12-lead standard, are highly dependent on
precise electrode placement [58-60], with each lead representing a
specific angle in the vectorised cardiac space and playing a crucial role
in diagnosis [61]. Diagnostic criteria are largely based on the waveforms
observed on these leads, making accurate electrode placement
essential—a task that typically requires medical professionals. Mis-
placed electrodes, depending on severity, can result in a range of diag-
nosis issues, ranging from artefacts and waveform shifts that severely
impact diagnostic accuracy to even causing misdiagnosis [62]. In
contrast, contactless ECG methods struggle with arbitrary and shifted
electrode placement, leading to ECG waveforms that do not align with
standard lead axes. As a result, these methods fail to provide diagnostic
value based on current ECG criteria. The only reliable metric that can be
consistently obtained from contactless ECG is heart rate, which can be
measured by detecting the QRS complex. This limitation is a significant
reason why contactless ECG approaches have not gained a strong foot-
hold in the market, as more reliable, cost-effective, and easier methods
are already available for heart rate measurement.

One intriguing approach introduced by [63] uses Doppler radar to
achieve contactless ECG monitoring. This research takes a distinctly
different path compared to other studies in the field. However, the true
value of this approach, particularly in relation to ECG monitoring, re-
mains highly uncertain and questionable. The method relies entirely on
generative and synthetic techniques to construct the ECG waveform
from the mechanical signals detected by the Doppler radar, utilising an
AI model trained on existing datasets. While the experimental results
produced waveforms that appeared visually comparable to actual ECG
waveforms, the synthesised output from the AI model lacks genuine
clinical significance. This is because the generated waveform does not
originate from any actual cardiac electrical activity. Consequently, this
approach is likely to expose its fundamental flaw when applied to
samples that deviate significantly from the training data, leading to
inaccurate results. The trained model is also prone to overfitting and
poor generalisation, as the relationship between mechanical wave in-
puts and synthesised electrical activity outputs is not inherently valid.
This limitation results in its impracticality for realistic ECG monitoring,
reducing it to a technique akin to radar-based heart rate monitoring
rather than a viable method for comprehensive ECG analysis.

4.4. Magnetocardiogram

A recently developed method worth highlighting is the magneto-
cardiogram (MCG), which detects the weak magnetic fields generated by
cardiac electrical activity. During cardiac action potentials, changes in
the cardiac electromotive force (EMF) create vectors observable in ECG.
These same currents also generate extremely weak magnetic fields,
which MCG is designed to measure. MCG uses highly sensitive magnetic
sensors positioned near the cardiac region to capture these fields,
acquiring signals through one or more channels and processing them
accordingly. The resulting waveforms are highly similar to ECG and
share many standard features, including the P wave, QRS complex, T
wave, and diagnostic markers such as ST-segment elevation or depres-
sion. Because MCG captures the magnetic field of the cardiac EMF, its
waveforms along certain vector orientations correspond closely to ECG
leads with similar orientations. A key advantage of MCG is its ability to
provide localised and focused measurements, whereas ECG signals often
represent a superposition of multiple EMF vectors. This makes MCG
particularly promising in detecting tissue pathologies such as scar tissue,
identifying arrhythmia foci, and assessing myocardial ischemia [23].
Furthermore, multi-channel MCG enables magnetic source imaging,
which can improve the spatial localisation of the underlying current
sources [22].

MCG was first conceptualised in the 1960s, but several factors have
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limited its adoption. The magnetic fields generated by the heart are
extremely weak, typically in the pico-tesla (pT) range [22], necessitating
the use of highly sensitive sensors such as tunnel magnetoresistance
(TMR) sensors [64], superconducting quantum interference devices
(SQUIDs) [65], and optically pumped magnetometers (OPMs) [66].
Moreover, the signals are easily corrupted by background magnetic
noise from natural, electrical, and infrastructural sources, as well as
from the MCG system itself. As a result, heavy shielding, sophisticated
filtering, and averaging techniques are often required to obtain usable
waveforms [67]. These technical challenges, combined with the high
cost of equipment and operation, currently limit the use of MCG to
specialised cardiology laboratories. Consequently, it has not yet been
widely adopted in general hospitals, portable healthcare electronic
systems, or wearable devices.

4.5. Wearable devices

Thanks to advancements in microelectronics and embedded pro-
cessors, wearable smart devices — particularly smartwatches — have
seen widespread adoption in recent years. Many of today’s smart-
watches are equipped with PPG sensors for heart rate monitoring and, in
some cases, SpO2 measurement. These devices are popular because they
offer a convenient, minimally distracting way to automatically monitor
heart rate while also providing the additional functions of a mobile
device.

For consumers, these smartwatches maintain a good balance be-
tween user experience and reliability, delivering reasonably accurate
measurements with minimal intrusion. However, they are not designed
to achieve the highest levels of accuracy, measurement depth, or true
non-invasive and distract-free monitoring. Their readings are usually
not approved for medical diagnosis, as large artefacts can frequently
occur, sometimes accounting for up to half of the signal [13]. Addi-
tionally, their use is limited in situations where smart devices are pro-
hibited or where patients are unable to wear them due to physical
limitations. Some users also find wearing smartwatches uncomfortable
or disruptive to their daily lives, viewing them as more of an interference
than a benefit.

With the advancement of artificial intelligence, the value of wearable
devices is further explored. Recent studies aim to expand the function-
ality and values of the specialised wearable devices designed for health
monitoring applications. Simultaneous access to multiple types of sensor
data gives them a significant advantage as they can perform more
advanced algorithms to obtain more in-depth measurements [68]. For
example, some specialised smart devices can provide blood pressure
measurement by using data from pulse waveform [69], limb ballisto-
cardiogram [70], or even embedded micro radars watches (such as
product like RadarPulse, which utilises micro radars to capture pulse
waveforms). Along with specialised algorithms and Al, these devices can
provide more comprehensive insights into cardiovascular health than
traditional wearables. However, despite their enhanced capabilities,
these devices are not yet suitable for medical diagnostic applications, as
they still face similar limitations and reliability issues as traditional
smartwatches. Consequently, their application remains largely in the
research and experimental stages.

Another emerging branch of wearable devices is skin-patch or in-
body devices. These devices are usually very small and can be fitted to
flexible materials, such as adhesion tape base, which holds the elec-
trodes and allows them to be affixed to the body [71], often in the
precordial area [20]. Unlike smartwatches, these devices mainly focus
on innovative material [72] and circuitry design [73]. They are usually
equipped with simple data-acquisition systems and designed to consume
very low power [74], which allows them to be powered by a micro
battery for extended periods. In order to retrieve recorded data, they
usually would require removing from the body, or through some near-
field communication approaches. Due to their tape-based design, they
require regular replacements, either of the electrodes or the whole
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sensor, further increasing cost and operation complexity. These methods
are not yet widely applied in medical diagnosis, as they generally pro-
vide less information than traditional contact-based wearable devices (e.
g., continuous ECG and blood pressure monitoring).

4.6. Ballistocardiography

Unlike other popular cardiovascular monitoring techniques, ballis-
tocardiography monitors cardiovascular activity indirectly by detecting
the ballistic forces generated by the pulse wave as it travels through the
aorta [75]. When the heart contracts, it pushes blood into the aorta, the
body’s largest blood vessel, creating a pulse wave. This wave travels
from the ascending aorta, passes through the aortic arch, and reaches the
descending aorta. The momentum of the blood generates a force oppo-
site to the pulse wave’s direction of travel, which is the signal measured
in BCG.

Fig. 5 illustrates the simplified working principle of BCG systems,
which typically use specialised weighing scales or weight sensors with
amplifying circuits to capture the signal. The resulting time-domain
waveform can then be used to service several key cardiovascular met-
rics, often with the help of ECG or other reference signals [21].

Although BCG is not yet widely used in medical practice, primarily
due to its susceptibility to movement artefacts and noise, some studies
highlight its potential applications. These include generic heartbeat
detector [76], low-cost telemedicine [34], cuffless blood pressure mea-
surement [70], and cardiac output estimation [21], which could be
valuable in certain clinical scenarios.

5. Key values, challenges and emerging opportunities

While the distraction-free and contactless measurement techniques
discussed above have limitations in flexibility, accuracy, and reliability,
many still offer valuable direct or indirect cardiovascular insights. Fig. 6
provides a summary of current cardiovascular monitoring and mea-
surement techniques, evaluating them based on distractions, accuracy,
and overall value. A clear trend emerges, suggesting that accuracy and
value are generally correlated with the level of distractions. However,
there are notable exceptions where less distracting methods offer sur-
prisingly high value or accuracy. Cardiological vibrograph information
(including SCG and PCG), electrocardiography, and BCG stand out as
key areas of interest due to their potential to deliver crucial cardiovas-
cular data with minimal intrusion on the user experience.

The techniques’ advantages are further rated in eight perspectives,
including application width, time efficiency, reliability, distraction free,
harmlessness, bandwidth, information value and working distance. Each
technique is evaluated across eight perspectives, with scores ranging
from O (worst) to 10 (best). Scores are assigned by comparing a tech-
nique’s performance in each perspective against the optimal
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performance for that measurement sign and the commonly recognised
standard. For example, the “time consumption” dimension is assessed
relative to the typical expectation of a heart rate measurement, which is
only a few seconds. If a method requires five minutes to obtain a reading,
it will receive a very low score (0). In contrast, if it provides per-beat
heart rate measurements in real time, it will receive a very high score
(10). Intermediate scores are determined using the same criteria, with
performance mapped linearly between 0 and 10.

Fig. 7 presents a comparison of each technique’s percentage advan-
tages across perspectives, according to the normalised scores. Normal-
isation to a percentage scale highlights the leading techniques for each
perspective. Fig. 8 provides a detailed per-method breakdown across all
perspectives, while Fig. 9 offers a normalised, perspective-by-
perspective view that clarifies the relative weight of each perspective
with respect to the evaluated techniques.

Figs. 7 — 9 indicate that the radar-based approaches and contactless
ECG approaches provide the best overall performances. To fully explore
these two outstanding methods, detailed discussions can be found
below.

5.1. Radar-derived seismocardiogram and phonocardiogram

With appropriate hardware configurations and advanced software
processing, Doppler radars can provide highly valuable information for
cardiovascular vibrography. These radars can effectively parse and
extract signals that reveal not only cardiovascular movements but also
SCG and PCG.

SCG is a relatively well-researched area [14], and it is often used in
wearable technology, where gyroscopes [77] or accelerometers [78] are
typically used to capture vibrography data. SCG is often employed to
assess cardiac function [16], analyse cardiopulmonary physiological
changes [79], examine heart failure [80,81] and evaluate recovery
outcomes [82]. When properly applied, it can provide a wealth of
valuable information [83]. On the other hand, PCG captures akin data
but focuses on higher-frequency and broader-band acoustic signals,
making it useful for diagnosing physical cardiac abnormalities such as
stenosis [84] and valve issues, as well as a generic cardiac dynamics
indicator [85], or even as a way of examining heart failure [86,87].
Another intriguing indicator is the low-frequency precordial movement
pattern, which reflects volumetric and pressure changes in the cardio-
vascular system [88]. Although this sign varies significantly from person
to person, it remains valuable when combined with vibrography data
and can also be captured through radar measurements.

For radar-based approaches, ensuring fidelity and effective band-
width of the signal is the key to efficient information extraction. When
properly utilised, the mechanical signals in the chest area can provide a
wide range of valuable information, such as SCG, PCG, and basic
movement patterns, which were usually explored using contact-based
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Fig. 5. Simplified schematic diagram of a ballistocardiogram measurement system.
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sensors [89]. Radar-based SCG approaches have also been investigated
due to its appealing technology [90], as it can provide convenient and
timely monitoring of the SCG without the need for special equipment or

in a specific environment.

5.2. Contactless electrocardiogram

Although concerns regarding signal quality and uncertainty pose
significant obstacles to their application, these methods are not without
functional value. ECG provides a direct and instantaneous reflection of

10
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cardiac electrical activity. When combined with other measurements,
even distorted ECG waveforms from contactless methods can still offer
valuable insights. For instance, they can be used to compare with me-
chanical cardiovascular signals, facilitating the estimation of movement
rates and pulse wave progression. This indirect information can help
derive factors such as blood pressure [91], analyse artery health and
artery sclerosis [92-95].

Additionally, reconstructing a standard 12-lead ECG from arbitrary
lead placements is not entirely out of reach [96], although this aspect
has rarely been explored with contactless ECG. With appropriate tech-
niques, it is possible to approximate a standard 12-lead ECG using

11

arbitrarily placed contactless electrodes. Achieving this goal would
provide a more comprehensive and valuable insight into the cardio-
vascular system.

5.3. Multimodal measurements and values of conjoining

Conjoining multimodal measurements and deriving new metrics is a
technique that has brought significant benefits to the measurement and
analysis process. This approach is widely used in various fields to esti-
mate or measure parameters that are either difficult to measure directly
or require distractive methods. A notable example in medical
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applications includes blood SpO2 calculation and cuffless blood pressure
measurement [69]. SpO2 is measured by directing light beams of two
different wavelengths, typically red and infrared, at the skin. The light
that passes through is then captured by a photoelectric sensor, and the
measurement of luminance is used to calculate SpO2 levels. Cuffless
blood pressure measurement usually involves combining ECG data with
pulse wave sensor readings, which measure the pulse transit time and
the pulse waveform shape. Blood pressure and arterial stiffness can then
be derived based on calculations using these parameters.

Measurements derived from such methods often rely on established
physical models, making them relatively accurate and reliable compared
to theoretical values. However, some derived measurements, like failure
or disease prediction, are based on experience-driven models or statis-
tical methods. In these cases, accurately representing the physical model
may be challenging due to the complexity or uncertainty of the entire
system. The results from such models are more often probability as-
sessments for specific events within a given timeframe rather than
precise measurements of physical parameters.

Both of these measurement techniques currently have limited value
in medical monitoring and diagnostics, but careful consideration must
be given to their implementation to ensure reliable results. In most
cases, physical-model approaches are preferred over experience-based
methods when an accurate, theoretically sound measurement is
needed. However, developing a new measurement index or applying this
approach to certain parameters is not a trivial task. Building a robust
physical model can be challenging, especially when there is limited prior
research on the topic. In such cases, auxiliary methods and approaches
may be necessary to support the model-building process, as discussed in
the following section.

12

5.4. Signal quality and measurement reliability

Obtaining signals via distraction-free and non-contact methods pre-
sents its own set of challenges. Due to the nature of such acquisition, the
signals are often highly susceptible to noise and interference. This not
only necessitates high-quality hardware for accurate signal capture but
also requires sophisticated software techniques to process and extract
the desired signals. Proper implementation of these steps is crucial for
achieving reliable results.

There are various methods to mitigate signal interference, ranging
from traditional approaches from adaptive filtering [97,98], wavelet
denoising [99], frequency-domain manipulation [100], and spectrum
analysis [101], to more advanced machine learning-based techniques
such as deep learning [102], autoencoders [103] and LSTM (Long short-
term memory) [104]. However, each method comes with trade-offs,
such as loss of signal fidelity, reduced diagnostic value, or increased
processing complexity. To preserve signal integrity and minimise
distortion, careful attention must be given to both hardware design and
software algorithm development. Similar concerns regarding motion-
induced artefacts and ambient vibrations have been explored in envi-
ronmental monitoring domains, such as transport noise and vibration
analysis, highlighting the need for robust hardware and advanced
filtering strategies [105,106].

5.5. Application of artificial intelligence and its trustworthiness concerns

The rapid rise of Al has inspired new solutions to a wide range of
challenges in this area. AI can assist in modelling core processing in
multimodal systems and serve as a validation tool for obtained results.
However, it is crucial to use Al responsibly, particularly in fields like
measurement and instrumentation, where precision and regulatory
compliance are especially critical in medical applications. To ensure that
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measurements retain their clinical value and significance, strict adher-
ence to guidelines, regulations, and standards is essential. Therefore, the
integration of Al into heart monitoring and measurement requires
caution and careful oversight.

On the other hand, Al is widely applied across all stages of cardiac
monitoring and diagnosis, especially in research and experimental set-
tings. Fig. 10 summarises the utilisation of Al across a wide range of
cardiac monitoring and diagnosis methods, highlighting its application
across multiple dimensions and stages. In traditional methods, such as
contact-based ECG, key areas for AI application include myocardial
infarction (MI) detection, arrhythmia identification, and critical events
prediction. Multiple different algorithms are selected according to the
specific task, ranging from simple multi-layer perceptron[107], to deep
neural networks in modern and complex applications. Software plat-
forms like Queen of Hearts [108] is often used as an assistive tool for
medical professionals. The deep learning model in this platform can
detect a range of cardiac occlusions and MI, even in cases without
directly observable ECG signs [109,110]. Numerous studies have also
focused on Al-driven detection of MI, multiple arrhythmias [111],
hypertension-induced critical events [112], and heart failure assessment
[113].

Unlike highly directed measurements like ECG, some models detect
cardiovascular issues with broader inputs, including mechanical signals
such as PCG, SCG, or BCG. Al has been used to predict heart valve dis-
orders solely from PCG data, electronically equivalent to cardiac
auscultation, allowing detection even in the absence of audible signs
[114]. AI's advanced signal processing capabilities make it well-suited
for analysing rougher inputs like PCG and smartwatch-based wrist
PPG. Wearable smartwatches have become a major focus for Al-driven
cardiac monitoring, thanks to advancements in embedded systems and
IoT technologies. These devices primarily use wrist PPG, where Al en-
hances signal quality, detects arrhythmias, and assesses sleep and stress
levels. Due to the computational limitations of wearable devices, some
smartwatches rely on cloud-based AI processing, with dedicated apps
providing trend analysis of recorded data. However, most Al imple-
mentations in these devices remain proprietary and subject to frequent
updates, making it difficult to evaluate their accuracy and reliability.

{
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Contactless cardiovascular monitoring is a relatively advanced field,
with most approaches focused on measuring or estimating heart rate
using various contactless sensors. However, due to the inherent limita-
tions of these methods, such as lower measurement reliability and
reduced medical values compared to traditional medical techniques, Al
applications in this area are still limited, particularly for evaluation and
diagnosis. Nonetheless, Al can help address some of these challenges.
Firstly, distraction-free and contactless signals are often noisy and prone
to interference, making them challenging to process with traditional
methods and filters. In the least reliable contactless heart rate mea-
surement approach, camera-based detection, Al is primarily used for
image enhancement, region of interest (ROI) detection [115], and
improving heart rate prediction accuracy [116]. In more reliable con-
tactless methods, such as radar-based and contactless ECG systems,
specialised Al models [99,100,102,104] have been developed to process
these signals more effectively. These models outperform conventional
techniques in tasks such as denoising and heartbeat detection. When
implemented with appropriate constraints, they can enhance signal
quality without significant fidelity loss.

Moreover, Al can play an important role in uncovering relationships
and modelling multimodal data analysis [117,118]. Deducing and pre-
dicting new measurements from combined multimodal data is inher-
ently complex and often lacks documented formulas or models. Al is able
to discover hidden relationships between measurements and target
values. By utilising advanced analytical techniques, it can establish
these relationships and build accurate predictive models. This technique
is also called soft sensors. Moreover, Al can assist in the validation
process [119]. Beyond uncovering relationships between available
measurements and hypothesised outcomes, Al can demonstrate the
clinical significance of new measurements, particularly when direct
comparisons with established ground truths are not feasible. In research,
novel measurement indexes may be introduced to estimate specific
cardiological factors, but traditional methods may lack reference mea-
sures for validation. In such cases, Al can help establish connections
between these new indexes and established clinical markers, reinforcing
their reliability and significance.

However, while Al offers advantages across various domains,
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concerns about responsibility and trustworthiness arise simultaneously.
One major issue is AI’s inherent black-box nature: its decision-making
processes are often opaque and difficult to interpret. Unlike traditional
diagnostic methods grounded in well-established physical principles, Al-
generated results require careful scrutiny, particularly in medical ap-
plications. There have been cases where Al has produced questionable or
theoretically implausible results. For example, some models claim to
derive ECG waveforms from cardiovascular mechanical waves detected
by radar [63]. This approach relies on a generative model, meaning the
ECG waveform is synthesised rather than directly linked to the heart’s
actual electrical activity. As a result, such outputs should be treated with
caution when considered for cardiac monitoring or diagnosis. Another
critical concern is data security and privacy. Unlike common user data,
medical data is considered highly sensitive and must be stored under
stringent safety and security standards, as regulated by law. Many cloud-
based services and client applications lack proper certification for
handling sensitive data, making them vulnerable to breaches. From an
ethical and patient confidentiality standpoint, cloud-based and Al-
driven solutions are often viewed with scepticism. Patients may be
reluctant to accept them due to untransparent workflows, uncontrolla-
ble data sharing, and cybersecurity risks [120].

Addressing these problems is far from straightforward, as they
require fundamental changes across the entire pipeline and can be
resource-intensive. Nevertheless, several strategies may help mitigate
these challenges. For Al opacity, reliability, and interpretability,
responsible and well-scoped deployment is crucial to improving trans-
parency and trustworthiness. This includes incorporating explainable
and rigorously validated Al methods, limiting the scope of Al applica-
tions, and refining feature-extraction algorithms rather than feeding
under-processed data directly into models. Interpretability strategies
should also be developed in parallel with Al methods to ensure seamless
integration into existing diagnostic and analytical frameworks. For
medical data security and privacy, stronger legislation, layered security
mechanisms, and secure data frameworks are essential. Practical mea-
sures include implementing end-to-end encryption, restricting the use of
proprietary or unverified software in critical systems, incorporating
secure data pipelines, and strengthening end-device protection through
better privacy hygiene practices [121]. While absolute cybersecurity
cannot be achieved, the overall level of protection and effectiveness can
be substantially improved by combining regulatory enforcement with
advanced security methods, which is an especially crucial consideration
in medical applications.

5.6. Challenges in regulatory and standardisation

In contrast to many other fields, medical applications are highly
regulated due to their direct interaction with humans, associated safety,
privacy, and ethical concerns, and the potentially catastrophic conse-
quences of system failures. Before deployment, a medical device must
obtain multiple certifications and comply with established standards (e.
g., the International Electrotechnical Commission (IEC) 60,601 series for
ECG devices), which often vary across countries and organisations.

For newer contactless and non-invasive methods, however, stand-
ardisation remains limited. These approaches are mostly experimental,
with working principles that differ widely from one another and from
traditional methods, leaving few existing standards that can be directly
applied. For instance, there are no recognised standards for assessing the
accuracy and reliability of radar-based cardiovascular monitoring sys-
tems. Existing regulations typically apply only to the radar hardware
itself (e.g., transmission frequency and power limitations set by the
Federal Communication Commission (FCC)) or to general hardware
requirements (e.g., Restriction of Hazardous Substance directive (RoHS)
compliance). This lack of standardisation creates significant challenges
for certification and clinical deployment. Combined with the fact that
most devices are still at the research stage, they are rarely applied
directly to disease diagnosis and instead used mainly as assistive tools in
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clinical trials.

For medical Al components, regulatory frameworks are somewhat
more developed (e.g., International Organization for Standardization
(ISO) 13485, ISO 14971, IEC 62304), but remain fragmented compared
with AI governance in other established fields [122]. Certification is
particularly difficult because Al is often considered opaque, whereas
medical technologies typically require transparent mechanisms and
predictable outcomes. Standards also vary across countries and regions,
further complicating the approval process. As a result, certification is
often sparse and unsystematic. Only products backed by significant re-
sources and extensive testing, such as smartwatches and certain Al-
based ECG diagnostic systems [108], achieve wider certification. Even
then, they may face obstacles in jurisdictions where standards are
unrecognised or incompatible. At present, medical Al certification is still
largely adapted from general software standards, with validation
focused mainly on performance rather than dedicated regulatory
frameworks.

5.7. Validation of monitoring techniques

Existing measurable signs are those that can be assessed using
established techniques, such as blood pressure and cardiac stroke vol-
ume. These signs are relatively straightforward to verify and validate, as
they can be compared directly to known ground truths. This allows for a
clear evaluation of accuracy and error rates, though comprehensive
statistical steps have to be followed for the reliability of results [123].

In contrast, contactless signs and measurements may lack direct
ground-truth counterparts. These signs, derived from multimodal data
processing, offer new ways to indicate cardiovascular parameters. In
such cases, the validation process focuses on demonstrating the value
and significance of these signs in evaluating cardiovascular performance
or predicting cardiovascular diseases. Al can be employed to establish
relationships between the novel signs and patient conditions, thereby
confirming their relevance and accuracy.

5.8. Comparative discussion

Cardiovascular monitoring relies on a wide range of methods, each
built on different signs and principles. Classical techniques such as PCG,
PPG, ECG, and blood pressure measurement are the most commonly
used in clinical practice. When greater diagnostic detail is required,
imaging methods such as ultrasound, CT, or MRI may be employed,
though at the expense of higher cost and longer scan times. These
methods are well established, supported by comprehensive diagnostic
standards, and valued for their accuracy and reliability. However, they
are often invasive, time-consuming, and technically demanding,
requiring trained professionals to operate, which limits their use mainly
to clinical environments.

In contrast, newer methods aim to improve user experience, ease of
use, and broader accessibility by employing non-invasive or contactless
sensing. Examples include radar sensors that detect chest wall motion
induced by cardiac activity, and contactless ECG and MCG sensors that
use capacitive sensing to capture cardiac EMFs without skin contact.
Wearable devices, such as smartwatches, offer additional convenience
for monitoring parameters like heart rate and SpO,. These approaches
reduce user burden and interference with daily life but face trade-offs,
including reduced signal quality, limited diagnostic value, and higher
susceptibility to noise and artefacts. Furthermore, wearables cannot
always be used in specific environments or scenarios.

To address these challenges, multimodal integration offers a prom-
ising path forward. While individual non-invasive modalities may pro-
vide limited information on their own, combining them can enable more
comprehensive analysis, improve artefact detection and cancellation,
and reveal features not accessible through a single modality. When
further supported by advanced algorithms and carefully applied Al
methods, these systems can compensate for signal limitations, improve
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diagnostic value, and increase reliability.

6. Conclusions

This article reviewed, compared, and analysed a wide range of car-
diovascular monitoring techniques, with a particular focus on non-
invasive and contactless methods. Emerging approaches, such as
radar-based sensing of precordial pulsations and vibrations, capacitive
ECG, camera-based PPG, as well as comparable non-invasive methods
including SCG, BCG, and wearable smartwatches, were examined in
terms of their working principles, advantages, and disadvantages across
multiple performance dimensions.

While contactless monitoring offers clear benefits, including
distraction-free operation, flexibility, and user-friendliness, it still faces
inherent challenges in signal quality, reliability, and overall perfor-
mance. Potential solutions include advanced hardware (e.g., wideband
analog CW Doppler radar, contactless ECG), effective signal processing,
responsible Al, and multimodal data fusion, which together can mitigate
signal degradation and enrich diagnostic information.

With these improvements, contactless cardiovascular monitoring has
the potential to complement and, in some cases, surpass traditional
methods. By leveraging their strengths while addressing current limi-
tations, these techniques could significantly enhance accessibility and
usability, offering transformative opportunities for cardiovascular
healthcare across diverse applications.
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